Lecture 4: Cohort fertility

Ernesto F. L. Amaral

February 16-23, 2023
Demographic Methods (SOCI 633/320)
www.ernestoamaral.com

ATM TVNXERSITY.

Cohort fertility

- Generational renewal
- Age-specific fertility
- ASFRs and the NRR
- Cohort parity
- Natural fertility

2

Generational renewal

- We have covered mainly the beginning and ending of lifelines on a Lexis diagram
- The start of life when one is born into a cohort
- The end of life when one takes one's exit by dying
- On the Lexis diagrams, we have been marking nothing at all along the lifeline, as if nothing happened in between birth and death
- In between, among other things, comes childbearing

Example of cohort fertility

- Example of a cohort of women, focusing on their daughters
- Sample of 10 women drawn from the 5,994,000 women born into the 5-year birth cohort born between 1930 and 1935 in the United States
- One of these women died 4 months after birth
- Another woman died at the age of 30

Fertility in the Lexis diagram

- The remaining eight women survived through to the end of the ages of childbearing
- Two of them had two daughters each
- Four of them had a single daughter
- Two of them had no daughters
- Each of these births is a droplet along the mother's lifeline

5

Figure 4.1 Cohort fertility on a Lexis diagram

Process of generational renewal

- The Lexis diagram shows a process of generational renewal
- First generation: cohort of women
- Second generation: their daughters
- Third generation: daughters' daughters
- The ratio of the total number of daughters born by cohort members to the initial number of women in the cohort is a generational replacement ratio
- This is the ratio of the size of the second generation to the first
- Net Reproduction Ratio
- Less precisely but more commonly, Net Reproduction Rate (NRR)

Be precise with name

- The name "Net Reproduction Rate" is more common than "Net Reproduction Ratio"
- But to call the NRR a "rate" is a misnomer
- A rate in demography is a value per unit of time, per year, per month, per decade
- The NRR is a pure ratio
- Daughters divided by mothers
- Mothers (denominator) do not have a chance to experience the event (move to numerator)
- $N R R$ is not expressed in units of time
- Other names used are "Generational Replacement Ratio" and "Net Reproductive Ratio"

$N R R$ formula

- Historical data usually has numbers of babies rather than numbers of daughters
- We need to convert from babies of both sexes to daughters when we calculate an NRR
- The conversion factor is the fraction female at birth ($f_{\text {fab }}$)
- Cohort of U.S. women born in 1934
- They generated the peak of the Baby Boom
- 1,054,933 women
- 3,231,638 babies

$$
N R R=\frac{(3,231,638) *(0.4877)}{1,054,933}=1.494
$$

- 1,576,094 daughters

$$
N R R=1,576,094 / 1,054,933=1.494
$$

$N R R$ and population growth

- In a closed population, if cohort after cohort each has a Net Reproduction Ratio greater than 1
- Then we expect each generation to be larger than the next
- So, we expect a growing population
- If cohorts have NRR values equal to 1 over the course of many generations
- Then we expect a stationary population
- If cohorts all have $N R R$ values less than 1
- Then we expect a contracting population

$N R R$ calculation

- When totals for cohorts and their babies are available, the calculation of the NRR is elementary

1. Number of babies born by the cohort
2. Fraction female at birth ($f_{\text {fab }}$)
3. Number of women in the cohort

- We multiply (1) and (2) and divide by (3) to obtain the NRR

$$
N R R=\frac{(\text { births to women in cohort })\left(f_{\mathrm{fab}}\right)}{\text { women in cohort }}
$$

- In the next example, we see
- NRR rising up to the 1934 cohort of Baby Boom mothers
- NRR falling back below 1 as the Baby Boom gave way to a "Baby Lull"

Table 4.1 Generation sizes and the $N R R$

Cohort	Babies	$f_{\text {fab }}$	Cohort Size	$N R R$
1910	$2,665,122$	0.4871	$1,353,682$	0.959
1922	$3,579,318$	0.4866	$1,408,021$	1.237
1934	$3,231,638$	0.4877	$1,054,933$	1.494
1947	$3,788,342$	0.4871	$1,884,884$	0.979

Default value for female birth

- Frequently, the fraction female at birth is not published
- We need a default value
- This fraction is generally a little less than one-half
- Current studies suggest that nearly equal numbers of boys and girls are conceived
- Slightly more male fetuses normally survive to birth
- The default value adopted is $f_{\text {fab }}=0.4886$
- But when the true value is known, we always use it

Default fraction and sex ratio

- The advantage of using a special number like 0.4886 for our default rather than a common number
(0.5000) is ease of recognition
- The number 0.4886 occurs nowhere in formulas except as $f_{\text {fab }}$, whereas 0.5000 may occur in formulas for many other reasons
- 0.4886 was the fraction in America at the time of textbook publication
- Demographers often quote sex ratios on a percentage basis in place of fractions female
- The sex ratio at birth implied by the default fraction is
$-100 *(0.5114) /(0.4886)=104.67$

$N R R$ is an input-output ratio

- Input: potential future mothers starting life in a cohort
- Output: baby daughters in the next generation
- The essential feature of an input-output ratio is that input must be measured in the same units as output

Same unit for input and output

- Since we are measuring input as a count of females, we need to measure output as a count of females
- We have women as input, so we need daughters as output, not sons plus daughters
- Furthermore, we have newborn women as input
- We count the size of the cohort at birth, not at some later age
- We count newborn daughters as output, not daughters at some later age

Considering mortality

- Mortality comes into the NRR, but only once, through the mortality of potential mothers
- Some members of a cohort die before beginning or completing childbearing
- Their deaths reduce the eventual total number of daughters and so affect the NRR
- $N R R$ is a measure of reproduction net of the effects of mortality
- That is, remaining reproduction after mortality has been taken into account

Analogy with income

- Mortality diminishes a cohort's production of offspring just as taxes diminish a person's spendable income
- The Net Reproduction Ratio is like a person's net income after taxes
- There is also a Gross Reproduction Ratio
- It is like gross, pre-tax income and excludes losses due to mortality (does not consider mortality)

Formal definition of NRR

- The Net Reproduction Ratio is the shining measure of demography
- The word "net" derives from a Latin root meaning "shining"
- It is one of the most important quantities demographers study
- The Net Reproduction Ratio ($N R R$) is
- The number of daughters per newborn prospective mother who may or may not survive to and through childbearing

Age-specific fertility

- The presentation of the $N R R$ as a ratio of generation sizes (daughters divided by mothers) is easy to understand conceptually
- In practice, however, the common method for calculating the NRR makes use of age-specific fertility rates

Age-specific fertility and CBR

- Age-specific fertility rate is like a Crude Birth Rate
- It has babies in the numerator and person-years in the denominator
- But it is different than the Crude Birth Rate
- The babies are only the babies born to women in a particular age range
- The person-years are only person-years lived by the women within that age range

Restrictions on person-years

- There are two restrictions on the person-years
- They have to be lived within the particular range of ages
- They have to be lived by women, not (as with the Crude Birth Rate) by men and women

Cohort age-specific fertility rate

- We take an age interval from x to $x+n$
- For a cohort age-specific fertility rate $\left({ }_{n} f_{x}\right)$
- We divide babies of both sexes born to women in the cohort while the women are between ages x and $x+n$
- By the cohort person-years lived by women in the cohort between those ages

Formal definition of ASFR

- The abbreviation "ASFR" stands for age-specific fertility rate
- The cohort age-specific fertility rate $(A S F R){ }_{n} f_{x}$ is the number of children born by women in the cohort between ages x and $x+n$ per person-year lived by women in the cohort between ages x and $x+n$

Period age-specific fertility rate

- For a period age-specific fertility rate $\left({ }_{n} F_{x}\right)$
- We divide babies born to women aged x to $x+n$ in the period
- By the period-person-years lived by women between those ages

Age groups for ASFR

- Births rates of women according to their ages
- Usually calculated for women in each of the seven 5-year age groups
- 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49
- Sometimes 35 single-year age groups are used
$-{ }_{n} A S F R_{x}$ means $A S F R$ for age group x to $x+n$

$$
{ }_{n} A S F R_{x}={ }_{n} \mathrm{births}_{x} /{ }_{n} \text { females }{ }_{x}^{*} 1,000
$$

- Age curve of fertility: the seven plotted ASFRs usually have an inverted U shape

ASFR

Age-specific Fertility Rates, Africa, 1970-75 and 2005-10

Source: United Nations, 2014a.

ASFR

Age-specific Fertility Rates, Europe, 1970-75 and 2005-10

Source: United Nations, 2014a.

Rates, not probabilities

- Age-specific fertility rates are rates, not probabilities
- They have units of 1/time
- Babies are persons
- So the babies in the numerator cancel the persons part of the person-years in the denominator, leaving 1 /years
- Doubling the width of the age interval
- It would increase both the numerator and the denominator and would not drastically change the rate

Analogy with mortality

- An age-specific fertility rate ${ }_{n} f_{x}$ is the counterpart for fertility of the age-specific mortality rate ${ }_{n} m_{x}$ in the lifetable
- ${ }_{n} m_{x}$ has the same denominator but a numerator with deaths in place of births

Focus on female fertility

- It is usual to concentrate on age-specific fertility rates for women
- Women's age is a more obvious determinant of fertility
- We can count births by age of father and divide by person-years-lived by men in the age interval
- Such male ASFRs are rarely used
- Ages of fatherhood are less narrowly restricted biologically and socially
- Data on fathers' ages are rarely tabulated

Note on female fertility

- "Female" ASFRs pertain to female parents, but to both male and female babies
- Sons and daughters enter into the numerator
- Person-years for mothers into the denominator
- If the numerator is further restricted to daughters
- The resulting rate should be labeled as a "daughtersonly" ASFR (${ }_{n} f_{x}^{\text {daughters }}$)
- Or by multiplying ${ }_{n} f_{x}$ by the fraction female at birth

Restrictions sometimes not clear

- Mathematical demographers often work with daughters-only rates
- Sometimes this restriction is mentioned in the text but omitted from the notation

Differentiating rates

$$
\text { Birth }=\frac{\text { Daughters }+ \text { Sons }}{\text { Women }+ \text { Men }}
$$

Fertility $=\frac{\text { Daughters }+ \text { Sons }}{\text { Women }}$

$$
\text { Reproduction }=\frac{\text { Daughters }}{\text { Women }}
$$

ASFRs and the NRR

- A Net Reproduction Ratio is most often calculated from a table of age-specific fertility rates
- Later, we will be able calculate this ratio from period-based rates, as we do now with cohortbased rates

Steps to estimate NRR

- ${ }_{n} f_{x}$ has babies divided by person-years
- We need to multiply back by person-years to recover a count of babies
- These are person-years lived by the female members of the cohort
- We get them from the ${ }_{n} L_{x}$ column of the female cohort lifetable

$$
n f_{x}^{*}{ }_{n} L_{x}
$$

Age-based formula for the $N R R$

- Need to add them up over all ages of childbearing
$-\Sigma$ (sigma) means add up over all the age intervals with different starting ages x
- Need to convert from babies to daughters
- Multiply by $f_{\text {fab }}$
- Divide by the initial cohort size (I_{0})

$$
N R R=\sum n f_{x n} L_{x} f_{f a b} / \ell_{0}
$$

Example of $N R R$ calculation

- Sample of 1,000 U.S. women randomly selected from the cohort born in 1934 (Table 4.2)
- Obtain the number of babies
- Multiply the age-specific fertility rates $\left({ }_{n} f_{x}\right)$
- By the lifetable person-years lived $\left({ }_{n} L_{x}\right)$ (radix of 1,000)
- The sum of the column for babies is 3,063
- Multiply the sum by the fraction $f_{\text {fab }}=0.4877$
- Divide by the radix

$$
N R R=3,063 * 0.4877 / 1000=1.494
$$

Table 4.2 A cohort $N R R$ from U.S. age-specific rates

x	${ }_{5} f_{x}$	${ }_{5} L_{x}$	Babies
0	0	4770	0
5	0	4726	0
10	0	4712	0
15	0.0811	4698	381
20	0.2384	4681	1116
25	0.1969	4662	918
30	0.1033	4637	479
35	0.0313	4604	144
40	0.0046	4561	21
45	0.0009	4503	4
			3,063

Two other measures of fertility

- Total Fertility Rate (TFR)
- Gross Reproduction Ratio (GRR)
- They are usually calculated from period rather than cohort data
- However, the concepts of the TFR and GRR are cohort concepts, just like the concept of the NRR
- They are measures of fertility rather than generational renewal
- TFR and GRR exclude the effects of mortality
- They indicate how many babies or daughters a cohort would produce in the absence of mortality

TFR and GRR formulas

- In the absence of mortality, each member of a cohort would live n person-years in the interval from x to $x+n$
- Replace ${ }_{n} L_{x} / I_{0}$ by n
- If we keep babies of both sexes, we get the TFR

$$
T F R=\sum\left({ }_{n} f_{x}\right)(n)
$$

- If we restrict to daughters by multiplying by the fraction female at birth ($f_{\text {fab }}$), we get the GRR

$$
G R R=\sum\left({ }_{n} f_{x}\right)(n)\left(f_{\mathrm{fab}}\right)
$$

Same n for all age intervals

- When all the age intervals in a data table have the same width n
- We can add up the ${ }_{n} f_{x}$ column and multiply by n at the end to obtain the TFR
- From data in Table 4.2, TFR is 3.283
- Then we multiply by $f_{\text {fab }}$ to obtain the $G R R$ - From data in Table 4.2, GRR is 1.601

Some notes about TFR

- TFR is not the same as expected total of children for women who do live through childbearing ages
- Women who survive to 50 might not be a typical subset of all women
- They might have had lower fertility in their twenties than women with poorer prospects for survival
- When we compute a TFR, we use the fertility for
- All women in their twenties
- Those who will and will not survive to older ages
- Every age group

Cohort parity

- The discussed age-specific rates track childbearing across the lifecourse
- As women in a cohort reach the end of their years of childbearing, we can estimate completed cohort fertility
- Data can come as distribution of children ever born
- This allows a third way to calculate the $N R R$
- The leading use for measures based on parity is the study of fertility limitation across history and around the world

Parity term

- Number of live births that a women has had is known as her parity
- "Parturition" means childbirth
- "Post partum" means "after childbirth"
- A woman is "nulliparous" when she has never had children

$w(j)$

- $w(j)$ is the count (tally) of women in a cohort who have parity j
- Parities are measured after all members of the cohort have completed childbearing
- w(0) cohort members have born no children
- w(1) have born one child
- w(2) have born two children

Estimate $N R R$ with $w(j)$

- If we are given a tally of women by parity for a cohort, we can find the NRR by the following formula
$N R R=\frac{(0 * w(0)+1 * w(1)+2 * w(2)+3 * w(3) \ldots)\left(f_{\mathrm{fab}}\right)}{w(0)+w(1)+w(2)+w(3) \ldots}$
- Each woman at parity 1 contributes one child
- Each woman at parity 2 contributes two children...
- Multiply by $f_{\text {fab }}$ to convert from children to daughters and divide by initial cohort size

Example: $N R R$ with cohort parity

- Completed parity for a sample of 1,000 women from the U.S. cohort born in 1934

$$
-f_{\text {fab }}=0.4877
$$

Table 4.3 Completed parity for U.S. women born in 1934

	0	1	2	3	4	5	6	7	8	9	10
$w(j)$	76	97	233	241	166	90	47	30	12	5	3
	R	(0*	0) +	+ 1	w10		$w($	+	+		
	=	76	1*97	2	+	+ 1	3)	0.4	7)		
					$=1$] M

Parity Progression Ratio: PPR(j)

- $P P R(j)$: fraction of women in a cohort who, having reached parity j, go on to have another baby
- They reach at least parity $j+1$
- End at some parity greater than j
- If $w(j)$ women are ending up at parity j
$-w(j)+w(j+1)+w(j+2) . .$. women reached at least parity j, ending up at parity j or more
$-w(j+1)+w(j+2) \ldots$ of these women went on at least to parity $j+1$

Formula for $\operatorname{PPR}(j)$

- The fraction progressing from j to $j+1$ is the ratio $P P R(j)$ given by

$$
\operatorname{PPR}(j)=\frac{w(j+1)+w(j+2)+\ldots}{w(j)+w(j+1)+w(j+2) \ldots}=\sum_{j+1}^{\infty} w(i) / \sum_{j}^{\infty} w(i)
$$

- PPR is always labeled by the starting parity
- In sigma notation, the starting index is written below the sigma symbol and the ending index above it
- These sums go up to the highest parity observed, above which $w(i)=0$

Example: $P P R(j)$

Table 4.3 Completed parity for U.S. women born in 1934

j	0	1	2	3	4	5	6	7	8	9	10
$w(j)$	76	97	233	241	166	90	47	30	12	5	3

- $\operatorname{PPR}(0)=924 / 1,000=0.924$
- All 1,000 women reach at least parity 0
$-1,000-76=924$ reach at least parity 1
- This is the ratio that goes from 0 to 1
- $\operatorname{PPR}(1)=(924-97) / 924=827 / 924=0.895$
- $\operatorname{PPR}(2)=(827-233) / 827=594 / 827=0.718$

Data specificities

- Data in Table 4.3
- Obtained by following girls born in 1934 as they grow, die or survive, and have children
- This data considers cohort mortality
- So we compute cohort NRR
- Other data might inform number of children ever born from women who have survived to a specific age (such as 50)
- Mean completed parity for these surviving women would estimate cohort TFR
- Multiplying by $f_{\text {fab }}$ would estimate cohort GRR (not NRR)

Example: $P P R(j)$, survivors data

- Parity for 50 -year-old Dutch women in 2009
- Survivors of the 1-year birth cohort from 1959

Table 4.4 Dutch women age 50 by parity, 2009

$j:$	0	1	2	3	4	5	$6+$
$w(j):$	22,275	15,151	49,972	22,897	6,378	1,690	1,207
$j+:$	119,570	97,295	82,144	32,172	9,275	2,897	1,207
$\operatorname{PPR}(j):$	0.814	0.844	0.392	0.288	0.312	0.417	

Source: Human Fertility Database (HFD) (May 2013).

- We know that $w(6+)=1,207$ and $w(5)=1,690$
- Add up from the right to find the row for $j+$
- $5+$ women $=1,207+1,690=2,897$
$-P P R(5)=1,207 / 2,897=0.417$
$-P P R(0)=97,295 / 119,570=0.814$

Trends of $P P R(j)$

- In the example, PPR drops abruptly after $\operatorname{PPR}(1)$
- Many couples want no more than two children
- $P P R$ increases at higher parities
- Subset of women and spouses who want large families
- Parities 5+ or 6+ are largely represented by them
- Some European countries are known for lowestlow fertility far below replacement levels
- Whether fertility in these societies will rebound is a subject for lively debate

PPR for Malawi

- 2004 Demographic and Health Survey (DHS)
- 770 women aged 45 to 50 interviewed
$-P P R(0)=0.978$
$-\operatorname{PPR}(1)=0.976$
$-P P R(2)=0.940$
$-\operatorname{PPR}(9)>0.600$
$-\operatorname{PPR}(11+) \approx 0.300$
- Sustained high PPR constitute evidence that family limitation practices are not widespread

Estimate $w(j)$, based on PPR

- Example of Malawi: 770 women
- Women who reach at least parity 1
- Women $1+=770$ * $\operatorname{PPR}(0)=770 * 0.978=753$
- Women at parity 0
- $w(0)=770-753=17$
- Women who reach at least parity 2
- Women 2+ = 753 * $\operatorname{PPR}(1)=753$ * $0.976=735$
- Women at parity 1
- $w(1)=753-735=18$

Conscious fertility limitation

- Demographers have devoted sustained attention to develop measures to track fertility decline and conscious fertility limitation
- Modern study of fertility limitation began with Louis Henry at the Institut National d'Études
Démographiques (INED) in Paris
- Extended by Peter Laslett, Anthony Wrigley, Rogers Schofield in the Cambridge Group for the History of Population and Social Structure in England
- Continued at the Office for Population Research at Princeton University under Ansley Coale

Louis Henry

- To understand the onset of fertility limitation in a society, it was paramount to describe the pattern of fertility before these practices started
- Conscious, intentional fertility limitation
- Family planning
- Analyze data to distinguish between absence and presence of practices by which couples
- Attempt to stop childbearing
- After desired family-size targets have been achieved

Signs of fertility limitation

- Data on couples' intentions do not exist to any extent for previous centuries
- Henry looked for signs that would appear in existing fertility data to indicate conscious family limitation
- He focused on parity
- Parity-specific control: when further childbearing is made to depend on the number of previous children
- Leading signs of parity-specific control
- Drop in Parity Progression Ratios at some parity
- Whether age-specific fertility rates differ according to women's parities

Natural fertility

- Natural fertility is the fertility in the absence of parity-specific control
- Parity-specific control can be inferred from
- Parity Progression Ratios
- Fertility rates specific to parity and age
- We can use this information to measure whether fertility is "natural fertility" in Henry's sense

Numerator and denominator

- Each combination of age and parity specifies a group of women and an interval
- e.g., women at parity 3 between ages 30 and 35
- Numerator: births at parity 3 before age 35
- Births at parity 3 move women to parity 4
- Denominator: person-years lived at parity 3 between ages 30 and 35
- For marital fertility rate
- Numerator only includes births to married women
- Denominator only includes years lived while married

Example

- Age- and parity-specific fertility rates
- Women between 30 and 35 years of age in 1990
- Cohort born between 1955 and 1960

Table 4.5 Fertility rates specific for age and parity

Parity	0	1	2	3	4	5	$6+$
Nigeria	0.272	0.225	0.257	0.244	0.279	0.284	0.233
Netherlands	0.146	0.221	0.079	0.075	0.090	NA	NA

- At parity 0, 60 first births and 220.4 person-years over age 30

$$
-60 / 220.4=0.272
$$

- At parity 1, 101 second births from 448.2 person-years
$-101 / 448.2=0.225$

Interpretation of example

- For Nigeria, fertility rates for women of the same age are close to each other, regardless of parity
- Evidence of natural fertility
- Estimates subject to sampling error
- For Netherlands, fertility rates drop by nearly a factor of 3 from parity 1 to parities 2+
- Few women at parities 5+ (not available estimates)
- This is a contrast between absence and presence of parity-specific control

Limitation of measures

- Parity Progression Ratios and fertility rates specific to parity and age
- Supply evidence about deviations from natural fertility
- Do not summarize the strength of fertility limitation
- Demographers use measures from period rather cohort rates to measure strength (chapter 6)

Family reconstitution

- Many of the innovative measures applied to contemporary populations were pioneered by historical demographers (Wringley et al. 1997)
- Data from local records of baptisms, marriages, and burials from parish churches in England, France, and other European countries
- Technique builds small family genealogies one by one
- Estimate age-specific mortality and age- and parityspecific fertility
- Data are incomplete due to migration

Biology perspective

- Biologists observe that differences in age-specific fertility rates between species are greater than within species
- This perspective implies that levels of fertility for humans subject to natural fertility would be the same from person to person and society to society
- Differences would appear with conscious fertility limitation
- Louis Henry discovered that this expectation is wrong

Biology, environment, culture

- If one takes natural fertility to mean the absence of parity-specific control
- There are variations in level of fertility in human societies from time to time and place to place
- Biological and environmental factors affects fertility levels
- Without introducing parity-specific patterns
- These factors interact with different cultural practices
- Not all forms of family limitation are parity specific

Technical distinctions

- Fecundity
- Biological capacity for childbearing
- Fecundability
- Probability of conceiving for a woman subject to a continuous exposure to the risk of pregnancy
- Fertility
- Outcome level of childbearing
- It depends on fecundity
- It also depends on decisions and behaviors of couples within their social, cultural, and environmental context

Technical terms for infertility

- Primary sterility
- Lack of capacity ever to have children, either for individuals or for couples
- Secondary sterility
- Loss of capacity to have children, after some children have been born
- Post-partum amenorrhoea
- Temporary infecundity for women following childbirth
- Lactational amenorrhoea
- Temporary infecundity due to breastfeeding, which reduces when breast milk is replaced by other food $\sqrt[A]{\mathbf{M}}$

Variation in natural fertility

- Previous terms help explain reasons for various fertility levels in societies with natural fertility
- Cultures have different norms about nursing and breast milk replacement
- It affects lactational amenorrhoea
- Post-partum abstinence varies by cultures
- It does not depend on parity (not parity-specific control)
- But it affects birth interval, infant survival, mother's health
- Nutrition affects fecundity in extremes of malnutrition
- In famines, women stop ovulating
- Unequal improvements in nutrition over the last centuries have been a major driver of economic development and indirectly of population growth

Homeostatic mechanisms

- Homeostatic mechanisms regulate population growth in relation to resources (Malthus)
- Homeostatic means maintaining the same state
- When resources are plentiful, growth rates rise
- When resources are scarce, growth rates drop
- This process operates through mortality or fertility
- Effects on fertility may operate through biological fecundity or through social practices
- Main historical homeostatic mechanisms come from economic arrangements, culture, and social institutions

Proximate determinants

- Economic, social, and cultural factors do not themselves prevent births
- Distinction between background causes and pathways that influence biological processes of having children
- The pathways are called proximate determinants
- Proximate determinants are the nearest causal factors to the actual fertility outcomes that can be measured from ordinary demographic sources
- i.e., surveys without special medical examinations
- Examples: contraception, induced abortion, post-partum infecundity, marriage, sexual activity

Estimation of natural fertility

- Natural fertility (Henry 1961, Coale and Trussell 1974)
- Level of reproduction in the absence of deliberate fertility control
- Closer to 6 or 7 live births per woman
-25% of completed fertility is due to genetics (same as mortality)
- Hutterites had 11 children per woman (1930s)
- Ethnoreligious group formed in the early 16th century
- Early age at marriage, good diet, good medical care, regularly engage in intercourse without contraception or abortion
- Nowadays, almost all live in South Dakota, North Dakota, Montana, and Western Canada

Age-specific fertility rates

Source: Weeks, 2015.

References

Wachter KW. 2014. Essential Demographic Methods.
Cambridge: Harvard University Press. Chapter 4 (pp. 7997).

