# Lecture 7: Period mortality 

## Ernesto F. L. Amaral

March 30-April 11, 2023<br>Demographic Methods (SOCI 633/320)

www.ernestoamaral.com

## Outline

- Measurement of mortality
- Standardization
- Period lifetables
- Stable population theory
- Another example of a lifetable

2

## Measurement of mortality

- Quantification of mortality is central to demography
- Measurement of mortality dates back to John Graunt (1620-1674) and his analyses of the "Bills of Mortality"
- Mortality refers to the relative frequency of death in a population


## Two concepts of mortality

- Life span
- Numerical age limit of human life
- Maximum recorded age at death
- 122 years and 164 days, lived by the Frenchwoman Jeanne Louise Calment
- Life expectancy
- Average expected number of years of life to be lived by a particular population at a given time


## Crude death rate

- Crude death rate (CDR)

$$
C D R=d / p^{*} 1,000
$$

- d: deaths in the year
- $p$ : population at midyear
- Data for the United States for 2013

$$
\begin{gathered}
C D R=2,596,993 / 316,497,531 * 1,000 \\
C D R=8.2
\end{gathered}
$$

- World range of CDR in 2014
- United Arab Emirates (UAE) and Qatar = 1
- Lesotho = 21


## CDR and age composition

- When CDRs are compared among countries, differences are sometimes due to differences in age composition
- Previous examples mean that there are 8 times more deaths per 1,000 people in the US than in the UAE
- Why is the CDR of the US eight times higher than of the UAE?
- The main reason is that the UAE is much younger in average age than is the U.S.
- Younger people have lower death rates


## Young and old people

- Countries with
- Large proportions of young people
- Small proportions of old people
- Usually have lower CDRs
- Countries with
- Small proportions of young people
- Large proportions of old people
- Usually have higher CDRs


## Changing age structure

- If age structure has changed over time
- CDRs should not be used to compare the death experiences of the same population at different points in time
- US CDR did not change much in 54 years
$-C D R_{1960}=9.5$ per 1,000
$-C D R_{2014}=8.2$ per 1,000
- $C D R$ is not capable of capturing the reduction in mortality when the population becomes older
- The US became older between 1960 and 2014
- Median age: 29 in 1960 and 37 in 2014


## Crude rate

- $C D R$ is a crude rate, because its denominator comprises the entire population
- However, population members are not equally at risk of experiencing death
- Risk of death varies by age, sex, race/ethnicity, socioeconomic status, and others
- Death rates vary considerably by age...


## Age-specific death rates

- Demographers use age-specific death rates as a more precise way to measure mortality
- Age-specific death rate $\left({ }_{n} A S D R_{x}\right.$ or $\left.{ }_{n} M_{x}\right)$

$$
{ }_{n} M_{x}={ }_{n} d_{x} /{ }_{n} p_{x} * 1,000
$$

$-{ }_{n} d_{x}$ : deaths to persons aged $x$ to $x+n$
$-{ }_{n} p_{x}$ : persons in the population who are aged $x$ to $x+n$
$-n$ : width of the age group

- $x$ : initial year of the age group
- For instance, $A S D R$ for age group 15-19 is ${ }_{5} M_{15}$


## Age curve of mortality, US, 2007



Source: Minino, et al., 2009: 2.

## Standardization

- ${ }_{n} A S D R_{x}$, and not $C D R$, should be used to compare the mortality experiences of countries with different age compositions
- We use standardization to take into account age composition when we compare death rates among different countries
- We can compare crude death rates for different countries or years
- We need to adjust for differences in age structure
- We estimate age-adjusted death rates and apply to a standard population


## Mortality and fertility

- We cannot simply add up ${ }_{n} A S D R_{x}$ and multiply by the width of the age interval
- People die just once
- This makes sense for age-specific fertility rates $\left({ }_{n} A S F R_{x}\right)$ and total fertility rates (TFR)

$$
T F R=\sum\left({ }_{n} A S F R_{x} * n\right)
$$

$-n$ : width of the age group

- Women can have more than one child


## Age standardization

- Young populations tend to have low CDRs
- Old populations tend to have high CDRs
- We estimate a variation of $C D R$ that allows us to account for age composition when comparing death rates among different countries

$$
C D R=\Sigma_{n} A S D R_{x} *\left({ }_{n} P_{x} / P\right) * 1,000
$$

- P: total population
$-{ }_{n} P_{x}$ : population in age group $x$
$-{ }_{n} A S D R_{x}: A S D R$ for people aged $x$ to $x+n$


## United States, 2006

| Age group | Population | Prop. population | Deaths | Age-specific <br> death rate (ASDR) |
| :---: | ---: | ---: | ---: | ---: |
| $0-1$ | $4,147,760$ | 0.0139 | 27,126 | 0.00654 |
| $1-4$ | $16,352,320$ | 0.0548 | 4,742 | 0.00029 |
| $5-9$ | $20,142,000$ | 0.0675 | 2,820 | 0.00014 |
| $10-14$ | $21,454,960$ | 0.0719 | 3,862 | 0.00018 |
| $15-19$ | $21,604,160$ | 0.0724 | 13,827 | 0.00064 |
| $20-24$ | $20,947,680$ | 0.0702 | 19,062 | 0.00091 |
| $25-29$ | $20,022,640$ | 0.0671 | 18,020 | 0.00090 |
| $30-34$ | $20,261,360$ | 0.0679 | 21,477 | 0.00106 |
| $35-39$ | $21,067,040$ | 0.0706 | 32,233 | 0.00153 |
| $40-44$ | $22,857,440$ | 0.0766 | 52,801 | 0.00231 |
| $45-49$ | $22,588,880$ | 0.0757 | 77,028 | 0.00341 |
| $50-54$ | $20,142,000$ | 0.0675 | 99,300 | 0.00493 |
| $55-59$ | $17,158,000$ | 0.0575 | 127,312 | 0.00742 |
| $60-64$ | $13,040,080$ | 0.0437 | 149,961 | 0.01150 |
| $65-69$ | $10,115,760$ | 0.0339 | 180,061 | 0.01780 |
| $70-74$ | $8,474,560$ | 0.0284 | 234,830 | 0.02771 |
| $75-79$ | $7,400,320$ | 0.0248 | 321,914 | 0.04350 |
| $80-84$ | $5,580,080$ | 0.0187 | 388,262 | 0.06958 |
| $85-89$ | $3,192,880$ | 0.0107 | 353,005 | 0.11056 |
| $90-94$ | $1,342,800$ | 0.0045 | 234,681 | 0.17477 |
| $95-99$ | 387,920 | 0.0013 | 107,283 | 0.27656 |
| $100+$ | 89,520 | 0.0003 | 39,292 | 0.43892 |
| Total | $298,400,000$ | $\mathbf{0 . 9 9 9 9}$ | $\mathbf{2 , 5 0 8 , 8 9 9}$ | $\mathbf{1 . 2 0 1 1 6}$ |

## Venezuela, 2006

| Age group | Population | Prop. population | Deaths | Age-specific <br> death rate (ASDR) |
| :---: | ---: | ---: | ---: | ---: |
| $0-1$ | 487,056 | 0.0219 | 7,905 | 0.01623 |
| $1-4$ | $1,779,200$ | 0.0800 | 1,139 | 0.00064 |
| $5-9$ | $2,308,512$ | 0.1038 | 739 | 0.00032 |
| $10-14$ | $2,275,152$ | 0.1023 | 933 | 0.00041 |
| $15-19$ | $2,250,688$ | 0.1012 | 3,286 | 0.00146 |
| $20-24$ | $2,057,200$ | 0.0925 | 4,896 | 0.00238 |
| $25-29$ | $1,872,608$ | 0.0842 | 4,138 | 0.00221 |
| $30-34$ | $1,614,624$ | 0.0726 | 3,278 | 0.00203 |
| $35-39$ | $1,530,112$ | 0.0688 | 3,290 | 0.00215 |
| $40-44$ | $1,401,120$ | 0.0630 | 4,049 | 0.00289 |
| $45-49$ | $1,145,360$ | 0.0515 | 4,707 | 0.00411 |
| $50-54$ | 971,888 | 0.0437 | 5,520 | 0.00568 |
| $55-59$ | 769,504 | 0.0346 | 5,964 | 0.00775 |
| $60-64$ | 558,224 | 0.0251 | 6,548 | 0.01173 |
| $65-69$ | 400,320 | 0.0180 | 7,514 | 0.01877 |
| $70-74$ | 302,464 | 0.0136 | 8,584 | 0.02838 |
| $75-79$ | 215,728 | 0.0097 | 9,212 | 0.04270 |
| $80-84$ | 117,872 | 0.0053 | 8,877 | 0.07531 |
| $85-89$ | 53,376 | 0.0024 | 6,816 | 0.12769 |
| $90-94$ | 15,568 | 0.0007 | 3,241 | 0.20820 |
| $95-99$ | 2,224 | 0.0001 | 724 | 0.32576 |
| $100+$ | 2,224 | 0.0001 | 1,089 | 0.48975 |
| Total | $\mathbf{2 2 , 2 4 0 , 0 0 0}$ | $\mathbf{0 . 9 9 5 1}$ | $\mathbf{1 0 2 , 4 4 9}$ | $\mathbf{1 . 3 7 6 5 5}$ |

## Population distribution by country



## Age structure



## The U.S. has an older population than Venezuela



## Age-specific death rates, 2006



## Standardize Venezuela's CDR

| Standardization Age group | Venezuela (observed rates) | United States (standard prop. population) | Venezuela's rates times U.S. prop. population |
| :---: | :---: | :---: | :---: |
| 0-1 | 0.01623 | 0.0139 | 0.0002 |
| 1-4 | 0.00064 | 0.0548 | 0.0000 |
| 5-9 | 0.00032 | 0.0675 | 0.0000 |
| 10-14 | 0.00041 | 0.0719 | 0.0000 |
| 15-19 | 0.00146 | 0.0724 | 0.0001 |
| 20-24 | 0.00238 | 0.0702 | 0.0002 |
| 25-29 | 0.00221 | 0.0671 | 0.0001 |
| 30-34 | 0.00203 | 0.0679 | 0.0001 |
| 35-39 | 0.00215 | 0.0706 | 0.0002 |
| 40-44 | 0.00289 | 0.0766 | 0.0002 |
| 45-49 | 0.00411 | 0.0757 | 0.0003 |
| 50-54 | 0.00568 | 0.0675 | 0.0004 |
| 55-59 | 0.00775 | 0.0575 | 0.0004 |
| 60-64 | 0.01173 | 0.0437 | 0.0005 |
| 65-69 | 0.01877 | 0.0339 | 0.0006 |
| 70-74 | 0.02838 | 0.0284 | 0.0008 |
| 75-79 | 0.04270 | 0.0248 | 0.0011 |
| 80-84 | 0.07531 | 0.0187 | 0.0014 |
| 85-89 | 0.12769 | 0.0107 | 0.0014 |
| 90-94 | 0.20820 | 0.0045 | 0.0009 |
| 95-99 | 0.32576 | 0.0013 | 0.0004 |
| 100+ | 0.48975 | 0.0003 | 0.0001 |
| Total |  | 0.9999 | 0.0097 |
|  |  | CDR per 1,000 | 9.68 |

## Another way... same results...

| Standardization <br> Age group | United States <br> (standard population) | Venezuela <br> (observed rates) | Venezuela <br> (standardized deaths) |
| :---: | ---: | ---: | ---: |
| $0-1$ | $4,148,175$ | 0.0162 | 67,325 |
| $1-4$ | $16,353,955$ | 0.0006 | 10,467 |
| $5-9$ | $20,144,014$ | 0.0003 | 6,446 |
| $10-14$ | $21,457,106$ | 0.0004 | 8,797 |
| $15-19$ | $21,606,321$ | 0.0015 | 31,545 |
| $20-24$ | $20,949,775$ | 0.0024 | 49,860 |
| $25-29$ | $20,024,642$ | 0.0022 | 44,254 |
| $30-34$ | $20,263,386$ | 0.0020 | 41,135 |
| $35-39$ | $21,069,147$ | 0.0022 | 45,299 |
| $40-44$ | $22,859,726$ | 0.0029 | 66,065 |
| $45-49$ | $22,591,139$ | 0.0041 | 92,850 |
| $50-54$ | $20,144,014$ | 0.0057 | 114,418 |
| $55-59$ | $17,159,716$ | 0.0078 | 132,988 |
| $60-64$ | $13,041,384$ | 0.0117 | 152,975 |
| $65-69$ | $10,116,772$ | 0.0188 | 189,892 |
| $70-74$ | $8,475,408$ | 0.0284 | 240,532 |
| $75-79$ | $7,401,060$ | 0.0427 | 316,025 |
| $80-84$ | $5,580,638$ | 0.0753 | 420,278 |
| $85-89$ | $3,193,199$ | 0.1277 | 407,740 |
| $90-94$ | $1,342,934$ | 0.2082 | 279,599 |
| $95-99$ | 387,959 | 0.3258 | 126,381 |
| $100+$ | 89,529 | 0.4898 | 43,847 |
| Total | $298,400,000$ |  | $\mathbf{2 , 8 8 8 , 7 1 8}$ |

## Comparing crude death rates

- $C D R_{\text {United States original }}$
$=8.41$ deaths per 1,000
- $C D R_{\text {Venezuela original }}$
$=4.61$ deaths per 1,000
- $C D R_{\text {Venezuela standardized }}$
$=9.68$ deaths per 1,000


## Period lifetables

- One of the most important and elegant measures of the mortality experiences of a population is the life table
- It dates back to John Graunt (1620-1674) and his "Bills of Mortality"
- Demographers use the life table to determine life expectancy, not only at birth but at any age


## Important information from life table

- Like the total fertility rate (TFR), the life table is a synthetic or hypothetical measure
- It tells us how many years of life, on average, may a person expect to live if the person during his or her lifetime is subjected to the age-specific probabilities of dying of a particular country or population at a given time


## Example: United States, 2010

- Let's say that the population of the U.S. in 2010 had a life expectancy of birth of 78.7 years
- This means that if a cohort of persons, throughout the years of their life, were subjected to the ASDRs $\left({ }_{n} M_{x}\right)$ of the total population in the U.S. in 2010
- They would live, on average, 78.7 years


## Examples of Life expectancy

- Life expectancy at birth is a primary indicator of quality of life

| 2013 | Life expectancy |  |
| :--- | ---: | ---: |
|  | Male | Female |
| World | 69 | 73 |
| More developed countries | 75 | 82 |
| Less developed countries (except China) | 65 | 69 |
| Japan | 80 | 86 |
| Lesotho | 42 | 45 |
| Sierra Leone | 45 | 46 |

## Limitations of $e_{0}$

- We need to be aware of the fact that when considering life expectancy at birth $\left(e_{0}\right)$, infant mortality plays a very important role
- When $e_{0}$ is low, a major reason is their very high infant mortality rate
- When comparing values of life expectancy at birth across countries, we should not think of $e_{0}$ as a modal age at death


## Abridged life table

- An abridged life table is calculated for age groups
- Usually for five-year age groups
- Rather than for single-year age groups


## Radix and mortality probabilities

- A life table starts with a population (a radix) of 100,000 persons born alive at age 0
- This number is arbitrary, but conventional
- It can also be 1,000 or 1
- From each age to the next, the population is decremented according to age-specific mortality probabilities until all members have died
- The mortality schedule is fixed and does not change over the life of the population


## Estimating period lifetables

- Estimate overall mortality of population
- Assumption: age-specific rates for the period continue unchanged into the future
- Synthetic cohort: imaginary cohort of new born babies would experience a life table from a specific period
- Life expectancy: average age at death for a hypothetical cohort born in a particular year and being subjected to the risks of death experienced by people of all ages in that year


## Mortality rates

- For cohort mortality, we did not build lifetables directly from age-specific mortality rates
- We constructed cohort lifetables by starting with the observed survivorships $I_{x}$
- From $I_{x}$, we computed ${ }_{n} q_{x}=1-\left(I_{x+n} / l_{x}\right)$
- From $I_{x}={ }_{n} d_{x} /{ }_{n} q_{x}$ and ${ }_{n} q_{x}={ }_{n} d_{x} / I_{x}$, we computed

$$
\begin{gathered}
{ }_{n} d_{x}=I_{x}-I_{x+n} \quad \text { or } \quad{ }_{n} d_{x}={ }_{n} q_{x}{ }^{*} I_{x} \\
{ }_{n} L_{x}=(n)\left(I_{x+n}\right)+\left({ }_{n} a_{x}\right)\left({ }_{n} d_{x}\right)
\end{gathered}
$$

- From ${ }_{n} d_{x}$ and ${ }_{n} L_{x}$ come age-specific mortality rates

$$
{ }_{n} m_{x}={ }_{n} d_{x} /{ }_{n} L_{x}
$$

## Cohort and period data

- For a period, we do not have information on lifetime cohort survival
- We have period counts of deaths and counts of people
- For cohort mortality (e.g. children of King Edward III), we had a death and an age at death
- For period data, there will be many people from whom dates at death are not available, because many people will not die in the period


## Mortality rates in period lifetables

- For a period lifetable, we start with age-specific mortality rates
- Thus, mortality rates $\left({ }_{n} m_{x}\right)$ are introduced only now
- We are assuming that age-specific mortality rates continue unchanged into the future
- The assumption is not about mortality probabilities


## Period mortality data

- Data by sex and age
- Deaths in the period
- Mid-period count of people
- Estimate period person-years lived (PPYL)
- Multiply mid-period count by the length of the period
- PPYL is not the same as
- Cohort person-years lived for any real cohort (CPYL)
- Cohort person-years for the synthetic cohort $\left({ }_{n} L_{x}\right)$


## Calculating mortality rates

- Compute age-specific death rate for each age group $\left({ }_{n} M_{x}\right)$

$$
{ }_{n} M_{x}=\frac{{ }_{n} D_{x}}{{ }_{n} K_{x} T}
$$

- ${ }_{n} D_{x}$
- Deaths between ages $x$ and $x+n$ in the period
- ${ }_{n} K_{x}$
- Mid-period counts of people between ages $x$ and $x+n$
- T
- Length of the period (usually it is 1 )


## Rates into probabilities

- We use algebra to solve for probabilities of dying $\left({ }_{n} q_{x}\right)$ in terms of mortality rates $\left({ }_{n} m_{x}\right)$
- We can substitute the period age-specific mortality rates $\left({ }_{n} M_{x}\right)$ into the formula in place of cohort age-specific mortality rates $\left({ }_{n} m_{x}\right)$
- Then, we obtain the other lifetable columns with ${ }_{n} q_{x}$


## Probability of dying $\left({ }_{n} q_{x}\right)$

- Need to convert age-specific death rates $\left({ }_{n} M_{x}\right)$ to probabilities of dying $\left({ }_{n} q_{x}\right)$
- Probability of death
- Number of deaths during any given number of years
- Divided by the number of people who started out being alive and at risk of dying

$$
{ }_{n} q_{x}=\frac{(n)\left({ }_{n} M_{x}\right)}{1+\left(n-{ }_{n} a_{x}\right)\left({ }_{n} M_{x}\right)}
$$

- ${ }_{n} a_{x}$ : average years lived per person by people dying in the interval


## Average years in the interval $\left({ }_{n} a_{x}\right)$

- ${ }_{n} a_{x}$ is the average years lived per person by people dying in the interval
- For most age intervals, we can substitute the approximate value

$$
{ }_{n} a_{x}=n / 2
$$

- But for the first few age groups and the last one, there are better options
- Special formulas for ${ }_{n} a_{x}$ come from empirical work by Keyfitz and Flieger (1968)...


## ${ }_{1} a_{0}$ and ${ }_{4} a_{1}$

- For the first year of life, ${ }_{1} a_{0}$ depends on ${ }_{1} M_{0}$

$$
{ }_{1} a_{0}=0.07+1.7\left({ }_{1} M_{0}\right)
$$

- For very low mortality, the average is about 1 month (0.07 of a year)
- It would require an age-specific rate almost as big as ${ }_{1} M_{0}=0.200$ to imply an average ${ }_{1} a_{0}$ near 6 months
- For a 4-year-wide age group from age 1 to age 5

$$
{ }_{4} a_{1}=1.5
$$

$$
{ }_{\infty} a_{x}
$$

- Everybody who reaches the last open-ended interval dies at that age group

$$
{ }_{\infty} q_{x}=1
$$

- Thus, for the last open-ended interval, we use the following formula that makes ${ }_{\infty} q_{x}=1$

$$
{ }_{\infty} a_{x}=1 /{ }_{\infty} M_{x}
$$

- We do not need ${ }_{\infty} a_{x}$ to estimate ${ }_{\infty} q_{x}$, but we use it to estimate person-years lived in the last openended interval $\left({ }_{\infty} L_{x}\right)$


## Example, U.S., 2010

- The following table gives raw counts of deaths and population for U.S. males and females for 2010
- Illustrate period lifetable calculations using males

Table 7.1 U.S. raw mortality data from 2010

| Age $x$ | $n$ | Male |  | Female |  | Age $x$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }_{n} D_{x}$ | ${ }_{n} K_{x}$ | ${ }_{n} D_{x}$ | ${ }_{n} K_{x}$ |  |
| 0 | 1 | 13,703 | 2,029,308 | 10,884 | 1,942,651 | 0 |
| 1 | 4 | 2,460 | 8,281,720 | 1,856 | 7,932,129 | 1 |
| 5 | 5 | 1,325 | 10,372,176 | 1,005 | 9,939,790 | 5 |
| 10 | 5 | 1,729 | 10,583,108 | 1,220 | 10,104,857 | 10 |
| 15 | 35 | 139,372 | 74,583,451 | 76,052 | 73,789,207 | 15 |
| 50 | 20 | 365,912 | 34,559,040 | 244,524 | 37,013,053 | 50 |
| 70 | 5 | 120,193 | 4,277,145 | 97,007 | 5,069,352 | 70 |
| 75 | 5 | 143,016 | 3,187,811 | 130,346 | 4,135,105 | 75 |
| 80 | 5 | 168,836 | 2,306,217 | 183,485 | 3,451,358 | 80 |
| 85 | 5 | 157,711 | 1,290,434 | 221,744 | 2,357,755 | 85 |
| 90 | 5 | 88,592 | 428,765 | 170,943 | 1,033,640 | 90 |
| 95 | 5 | 25,975 | 80,683 | 78,713 | 288,017 | 95 |
| 100 | $\infty$ | 3,607 | 7,883 | 18,223 | 43,621 | 100 |
| Male |  | ${ }_{35} a_{15}=22.247$ |  | ${ }_{20} a_{50}=11.874$ |  |  |
| Female |  | ${ }_{35} a_{15}=23.996$ |  | ${ }_{20} a_{50}=12.201$ |  |  |

[^0]
## ${ }_{1} M_{0}$

- Calculate observed period age-specific mortality rate for the 1-year-wide period

$$
{ }_{1} M_{0}={ }_{1} D_{0} /{ }_{1} K_{0}=13,703 / 2,029,308=0.006753
$$

- It comes out to about 7 per thousand per year


## ${ }_{1} a_{0}$

- How early in the interval do those who die in it die?

$$
\begin{gathered}
{ }_{1} a_{0}=0.07+1.7{ }_{1} M_{0} \\
{ }_{1} a_{0}=0.07+1.7 * 0.006753 \\
{ }_{1} a_{0}=0.081480
\end{gathered}
$$

- The fraction 0.081 of a year is just about 1 month
- Infant boys who do die live about 30 days


## ${ }_{1} 90$

- The following information is a refined estimate of the probability of dying in the first year after birth

$$
\begin{aligned}
{ }_{1} q_{0} & =\frac{(1)\left({ }_{1} M_{0}\right)}{1+\left(1-{ }_{1} a_{0}\right)\left({ }_{1} M_{0}\right)}=\frac{0.006753}{1+(1-0.081480) *(0.006753)} \\
& =0.006710
\end{aligned}
$$

- A common mistake is to use ${ }_{n} a_{x}$ instead of $n-{ }_{n} a_{x}$ in the denominator
- The denominator itself is always close to 1


## ${ }_{4} q_{1}$

- For the next interval, we have $x=1$ and $n=4$
- Half of $n=4$ would be 2 , but the rule places deaths half a year earlier on average

$$
\begin{gathered}
{ }_{4} a_{1}=1.5 \\
n-{ }_{4} a_{1}=2.5
\end{gathered}
$$

- From the data

$$
{ }_{4} M_{1}=2,460 / 8,281,720=0.000297
$$

- Then

$$
{ }_{4} q_{1}=\frac{4 * 0.000297}{1+2.5 * 0.000297}=0.001187
$$

## Next calculations

- For period lifetables, we go on to build all the other columns from the ${ }_{n} q_{x}$ column
- Not from the $I_{x}$ column as we did for cohort lifetables
- We choose a radix $I_{0}$, and calculate
$-I_{x+n}=\left(1-{ }_{n} q_{x}\right) I_{x}$
$-I_{1}=\left(1-{ }_{1} q_{0}\right) I_{0}$
$-I_{5}=\left(1-{ }_{4} q_{1}\right) I_{1}$
- And so on through the whole table
- Our period lifetable is the cohort lifetable for the synthetic cohort


## Next columns

- Now we can calculate ${ }_{n} d_{x},{ }_{n} L_{x}, T_{x}$, and $e_{x}$
- As a bonus, we have a chance to check our calculations with

$$
{ }_{n} m_{x}={ }_{n} d_{x} /{ }_{n} L_{x}
$$

- This result has to come out equal to the period age-specific rates ${ }_{n} M_{x}$ with which we start


## Number of deaths $\left({ }_{n} d_{x}\right)$ and alive $\left(I_{x}\right)$

- The life table assumes an initial population of 100,000 births (radix), which is subjected to the mortality schedule
- Radix can also be 1 or 1,000
- Number of people dying during the age interval $\left({ }_{n} d_{x}\right)$ equals probability of death during the age interval $\left({ }_{n} q_{x}\right)$ times number alive at beginning of the age interval $\left(I_{x}\right)$

$$
{ }_{n} d_{x}={ }_{n} q_{x} * I_{x}=I_{x}-I_{x+n}
$$

- Subtracting those who died in the previous age interval gives the number of people still alive at the beginning of next age interval

$$
I_{x+n}=\left(1-{ }_{n} q_{x}\right) I_{x}=I_{x}-{ }_{n} d_{x}
$$

## Number of years lived $\left({ }_{n} L_{x}\right)$

- Number of years lived $\left({ }_{n} L_{x}\right)$ considers that some people die before the end of the age interval

$$
{ }_{n} L_{x}=(n)\left(I_{x+n}\right)+\left({ }_{n} a_{x}\right)\left({ }_{n} d_{x}\right)
$$

- We usually have ${ }_{n} a_{x}=n / 2$, then formula simplifies

$$
{ }_{n} L_{x} \approx(n / 2)\left(I_{x}+I_{x+n}\right)
$$

- ${ }_{n} L_{x}$ for the last open-ended interval

$$
\begin{gathered}
{ }_{\infty} L_{x}=\left({ }_{\infty} a_{x}\right)\left({ }_{\infty} d_{x}\right)=\left(1 /{ }_{\infty} M_{x}\right)\left({ }_{\infty} d_{x}\right)={ }_{\infty} d_{x} /{ }_{\infty} M_{x} \\
\text { or }{ }_{\infty} L_{x}=I_{x} /{ }_{\infty} M_{x}
\end{gathered}
$$

$-I_{x}$ : number of survivors to the oldest age group
$-{ }_{\infty} M_{x}$ : death rate at the oldest age group

## Cumulative number of years lived $\left(T_{x}\right)$

- Number of years lived are added up, cumulating from the oldest to the youngest ages
- Total number of years lived in a given age interval and all older age intervals ( $T_{x}$ )

$$
T_{x}=T_{x+n}+{ }_{n} L_{x}
$$

- $T_{x}$ is easiest to compute by filling the whole ${ }_{n} L_{x}$ column and cumulating sums from the bottom up

$$
T_{x}={ }_{n} L_{x}+{ }_{n} L_{x+n}+{ }_{n} L_{x+2 n}+\ldots
$$

- At the oldest age, $T_{x}$ equals ${ }_{n} L_{x}$


## Life expectancy $\left(e_{x}\right)$

- Expectation of life is the average remaining lifetime
- It is the total years remaining to be lived at exact age X
- Division of total number of years lived $\left(T_{x}\right)$ by number of people alive at that exact age $\left(I_{x}\right)$

$$
e_{x}=T_{x} / I_{x}
$$

- This index summarizes the level of mortality prevailing in a given population at a particular time


## Average age at death $\left(x+e_{x}\right)$

- $e_{x}$ is the expectation of future life beyond age $x$
- It is not an average age at death
- We add $x$ and $e_{x}$ to obtain the average age at death for cohort members who survive to age $x$
- Not all lifetables include $x+e_{x}$
- The $x+e_{x}$ column always go up
- $e_{x}$ does not always go down
- It often goes up after the first few years of life, because babies who survive infancy are no longer subject to the high risks of infancy


## Probability of surviving $\left(p_{x}\right)$

- Probability of surviving from birth to age $x$ is designated $p_{x}$

$$
p_{x}=I_{x} / I_{0}
$$

- We can also estimate the probability of surviving from one particular age group to the subsequent age group


## Crude death and birth rates

- Crude death rate (CDR) equals total number of deaths $\left(I_{0}\right)$ divided by total population $\left(T_{0}\right)$
- Crude birth rate $(C B R)$ equals total number of births $\left(I_{0}\right)$ divided by total population $\left(T_{0}\right)$

$$
C D R=C B R=I_{0} / T_{0}=1 /\left(T_{0} / I_{0}\right)=1 / e_{0}
$$

## Typical shapes of lifetable functions






## Stable population theory

- Alfred Lotka (1880-1949) used life tables in the development of his stable population theory
- If a population that is closed to migration experiences constant schedules of age-specific fertility and mortality rates
- It will develop a constant age distribution
- It will grow at a constant rate, irrespective of its initial age distribution


## Alternative interpretations

- Synthetic cohort (history of a hypothetical cohort)
- Lifetime mortality experience of a single cohort of newborn babies, who are subject to specific age-specific mortality rates
- Used in public health/mortality studies, calculation of survival rates for estimating population, fertility, net migration...
- Stationary population
- Results from unchanging schedule of age-specific mortality rates and a constant annual number of births/deaths (radix)
- Used in the comparative measurement of mortality and in studies of population structure


## Same interpretation

- $x$ to $x+n$
- Period of life between two exact ages
- For instance, 20-25 means the 5 -year interval between the $20^{\text {th }}$ and $25^{\text {th }}$ birthdays
- ${ }_{n} q_{x}$
- Proportion of persons in the cohort alive at the beginning of an indicated age interval ( $x$ ) who will die before reaching the end of that age interval $(x+n)$
- Probability that a person at his/her $x^{\text {th }}$ birthday will die before reaching his/her $x+n^{\text {th }}$ birthday
- $e_{x}$ (life expectancy)
- Average remaining lifetime (in years) for a person who survives to the beginning of the indicated age interval

$$
I_{x}
$$

- Synthetic cohort
- Number of persons living at the beginning of the indicated age interval ( $x$ ) out of the total number of births assumed as the radix of the table
- Stationary population
- Number of persons who reach the beginning of the age interval each year


## ${ }_{n} d_{x}$

- Synthetic cohort
- Number of persons who would die within the indicated age interval $(x$ to $x+n$ ) out of the total number of births assumed in the table
- Stationary population
- Number of persons that die each year within the indicated age interval


## ${ }_{n} L_{x}$

- Synthetic cohort
- Number of person-years that would be lived within the indicated age interval $(x$ to $x+n)$ by the assumed birth cohort (e.g., $\left.I_{0}=100,000\right)$
- Stationary population
- Number of persons in the population who at any moment are living within the indicated age interval


## $T_{x}$

- Synthetic cohort
- Total number of person-years that would be lived after the beginning of the indicated age interval by the assumed birth cohort (e.g., $I_{0}=100,000$ )
- Stationary population
- Number of persons in the population who at any moment are living within the indicated age interval and all higher age intervals


## Female and male life tables, U.S., 2007

ABRIDGED LIFE TABLE FOR THE FEMALE POPULATION OF THE UNITED STATES: 2007


ABRIDGED LIFE TABLE FOR THE MALE POPULATION OF THE UNITED STATES: 2007
Stationary population

| Age group | $\begin{gathered} \text { Width } \\ \mathrm{n} \end{gathered}$ | $\begin{gathered} \text { Population } \\ \mathrm{nPx} \\ \hline \end{gathered}$ | Deaths nDx | Age-specific death rates nMx | Proportion dying nqx | \# living at beginning of interval | \# dying during interval ndx | In the age interval nLx |  | In this and following ages Tx | Average remaining lifetime ex |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2,079,846 | 16,293 | 0.0078 | 0.0078 | 100,000 | 780 | 99,615 |  | 7,582,342 | 75.8 |
| 1-4 | 4 | 8,507,893 | 2,634 | 0.0003 | 0.0012 | 99,220 | 123 | 396,648 |  | 7,482,726 | 75.4 |
| 5-9 | 5 | 10,095,353 | F 1,519 | 0.0002 | 0.0008 | 99,097 | 75 | 495,313 |  | 7,086,078 | 71.5 |
| 10-14 | 5 | 10,484,813 | F 2,066 | 0.0002 | 0.0010 | 99,022 | 98 | 494,887 |  | 6,590,765 | 66.6 |
| 15-19 | 5 | 11,252,863 | 9,558 | 0.0008 | 0.0042 | 98,925 | 419 | 493,658 |  | 6,095,878 | 61.6 |
| 20-24 | 5 | 10,828,130 | 15,758 | 0.0015 | 0.0073 | 98,505 | 714 | 490,881 |  | 5,602,220 | 56.9 |
| 25-29 | 5 | 10,489,470 | 15,107 | 0.0014 | 0.0072 | 97,791 | 702 | 487,338 |  | 5,111,340 | 52.3 |
| 30-34 | 5 | 9,802,132 | 14,685 | 0.0015 | 0.0075 | 97,089 | 725 | 483,776 |  | 4,624,002 | 47.6 |
| 35-39 | 5 | 10,684,227 | 19,755 | 0.0018 | 0.0092 | 96,364 | 887 | 479,777 |  | 4,140,226 | 43.0 |
| 40-44 | 5 | 11,085,591 | 30,350 | 0.0027 | 0.0136 | 95,477 | 1,299 | 474,390 |  | 3,660,450 | 38.3 |
| 45-49 | 5 | 11,318,167 | - 47,904 | 0.0042 | 0.0210 | 94,179 | 1,974 | 466,332 |  | 3,186,060 | 33.8 |
| 50-54 | 5 | 10,313,298 | - 66,552 | 0.0065 | 0.0318 | 92,205 | 2,931 | 454,237 |  | 2,719,728 | 29.5 |
| 55-59 | 5 | 8,790,943 | - 81,590 | 0.0093 | 0.0454 | 89,274 | 4,055 | 436,954 |  | 2,265,491 | 25.4 |
| 60-64 | 5 | 6,979,426 | - 92,028 | 0.0132 | 0.0640 | 85,218 | 5,451 | 413,393 |  | 1,828,537 | 21.5 |
| 65-69 | 5 | 5,003,042 | - 100,492 | 0.0201 | 0.0959 | 79,767 | 7,651 | 380,904 |  | 1,415,144 | 17.7 |
| 70-74 | 5 | 3,889,104 | - 117,852 | 0.0303 | 0.1414 | 72,116 | 10,196 | 336,467 |  | 1,034,240 | 14.3 |
| 75-79 | 5 | 3,192,676 | - 149,669 | 0.0469 | 0.2107 | 61,920 | 13,046 | 278,295 |  | 697,773 | 11.3 |
| 80-84 | 5 | 2,235,826 | - 171,134 | 0.0765 | 0.3220 | 48,874 | 15,739 | 205,629 |  | 419,478 | 8.6 |
| 85+ | --- | 1,606,146 | F 248,866 | 0.1549 | 1.0000 | 33,135 | 33,135 | 213,850 |  | 213,850 | 6.5 |

Source: Formulas from Kintner (2003); Population data from 2007 ACS; Death data from CDC ((http://www.cdc.gov/nchs/data/dvs/mortfinal2007_worktable310.pdf).

## Population, U.S., 2007



# ${ }_{n} L_{x}$ from previous life tables, U.S., 2007 



## Problems with life tables

- We saw life tables based on complete empirical data
- We might experience some issues
- Have partial information to build our life table
- Have data for only some age groups
- Information for some ages may be more reliable than for other ages
- Have ideas about mortality level, but not a full life table to make projections
- We can use model life tables to solve these issues


## Model life tables

- A life table constructed from mathematical formulas is called a model life table
- Use mathematical formulas to fill in missing parts
- Have a whole life table from partial information
- Identify suspicious and poor quality data with model expectations
- Supply standard assumptions for projections
- Find regularities for the invention of indirect measures
- Reconstruct rates from historical counts of births and deaths (inverse projection)


## Another example of a lifetable

Life Table for the Total Population, United States, 2010

| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ | $(7)$ |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- |
| Age range | ${ }_{n} q_{x}$ | $l_{x}$ | ${ }_{n} d_{x}$ | $L_{n} L_{x}$ | $T_{x}$ | $e_{x}$ |
| $<1$ | 0.006123 | 100,000 | 612 | 99,465 | $7,866,027$ | 78.7 |
| $1-4$ | 0.001071 | 99,388 | 106 | 397,294 | $7,766,561$ | 78.1 |
| $5-9$ | 0.000573 | 99,281 | 57 | 496,250 | $7,369,267$ | 74.2 |
| $10-14$ | 0.000708 | 99,224 | 70 | 495,989 | $6,873,017$ | 69.3 |
| $15-19$ | 0.002463 | 99,154 | 244 | 495,240 | $6,377,028$ | 64.3 |
| $20-24$ | 0.004317 | 98,910 | 427 | 493,529 | $5,881,789$ | 59.5 |
| $25-29$ | 0.004791 | 98,483 | 472 | 491,249 | $5,388,260$ | 54.7 |
| $30-34$ | 0.005497 | 98,011 | 539 | 488,744 | $4,897,011$ | 50.0 |
| $35-39$ | 0.006913 | 97,472 | 674 | 485,753 | $4,408,267$ | 45.2 |
| $40-44$ | 0.009979 | 96,798 | 966 | 481,758 | $3,922,514$ | 40.5 |
| $45-49$ | 0.016044 | 95,833 | 1,538 | 475,584 | $3,440,756$ | 35.9 |
| $50-54$ | 0.024343 | 94,295 | 2,295 | 466,066 | $2,965,173$ | 31.4 |
| $55-59$ | 0.035106 | 92,000 | 3,230 | 452,347 | $2,499,106$ | 27.2 |
| $60-64$ | 0.049847 | 88,770 | 4,425 | 433,348 | $2,046,759$ | 23.1 |
| $65-69$ | 0.074406 | 84,345 | 6,276 | 406,912 | $1,613,411$ | 19.1 |
| $70-74$ | 0.112315 | 78,069 | 8,768 | 369,612 | $1,206,499$ | 15.5 |
| $75-79$ | 0.174782 | 69,301 | 12,113 | 317,694 | 836,886 | 12.1 |
| $80-84$ | 0.274384 | 57,188 | 15,692 | 248,038 | 519,193 | 9.1 |
| $85-89$ | 0.430820 | 41,497 | 17,878 | 162,723 | 271,155 | 6.5 |
| $90-94$ | 0.615282 | 23,619 | 14,532 | 79,720 | 108,432 | 4.6 |
| $95-99$ | 0.783397 | 9,087 | 7,119 | 24,670 | 29,212 | 3.2 |
| $100+$ | 1.00000 | 1,968 | 1,968 | 4,542 | 4,542 | 2.3 |

Source: Arias (2014: 62).

Source: Poston, Bouvier 2017.

## Basic life table columns

1. Age intervals of each group
2. ${ }_{n} q_{x}$ : probability of dying between age $x$ and age $x+n$
3. $I_{x}$ : number of survivors at each age $x$
4. ${ }_{n} d_{x}$ : number of deaths between age $x$ and age $x+n$
5. $n_{n}$ : number of years lived by all persons who enter the age interval while in the age interval
6. $T_{x}$ : number of years lived by the population in the age interval and in all subsequent intervals
7. $e_{x}$ : remaining life expectancy at each age

## 1. Age intervals of each group

- Age groups refer to the range of years between two birthdays
- The age group 5-9 refers to the five-year interval between the fifth and the tenth birthdays


## 2. Probabilities of dying $\left({ }_{n} q_{x}\right)$

- The most basic column of the life time shows probabilities of dying for each age group $\left({ }_{n} q_{x}\right)$
- These are probabilities that persons alive at the beginning of an age interval will die during the interval, before they reach the start of the next age interval

$$
{ }_{n} q_{x}={ }_{n} d_{x} / I_{x}
$$

- For last age group, ${ }_{n} q_{x}=1.0$ because everybody dies


## Rates and probabilities

- Difference between mortality rates $\left({ }_{n} M_{x}\right)$ and mortality probabilities $\left({ }_{n} q_{x}\right)$ is the denominator
- ${ }_{n} M_{x}$ : denominator is midyear population
- ${ }_{n} q_{x}$ : denominator is population alive at the beginning of the age interval


## 3. Number of survivors $\left(I_{x}\right)$

- Number of people alive at the beginning of the age interval $\left(I_{x}\right)$
- Known as "the little I column"
- It is calculated by subtracting the number of people dying $\left({ }_{n} d_{x}\right)$ from the $I_{x}$ value in the age interval immediately preceding the one being calculated
- Example of U.S. life table in 2010
- Of the 99,224 people alive at the beginning of the age interval 10-14 ( $I_{10}$ )
- 70 of them die during the age interval $\left({ }_{5} d_{10}\right)$
- Thus, the value of $I_{15}$ is $99,154=99,224-70$


## 4. Number of deaths $\left({ }_{n} d_{x}\right)$

- Number of people who die during a particular age interval $\left({ }_{n} d_{x}\right)$

$$
{ }_{n} d_{x}=I_{x}{ }^{*}{ }_{n} q_{x}
$$

- For the number of people who die during the age interval of 40-44

$$
\begin{gathered}
{ }_{5} d_{40}={ }_{5} q_{40} * I_{40} \\
{ }_{5} d_{40}=0.009979 * 96,798 \\
{ }_{5} d_{40}=966
\end{gathered}
$$

## 5. Years lived in age interval $\left({ }_{n} L_{x}\right)$

- Total number of years lived by all persons who enter that age interval while in the age interval $\left({ }_{n} L_{x}\right)$
- Known as "the big L column"
- Example of U.S. life table in 2010
- 98,011 persons are alive at the beginning of age interval 30-34 ( ${ }_{30}$ )
- If none of them died during the age interval, they would have lived 490,055 years (98,011 times 5)
- But 539 of them died $\left({ }_{5} d_{30}\right)$


## Different formulas for ${ }_{n} L_{x}$

- Demographers assume that deaths are roughly distributed during the five-year period for many of the age intervals
- This assumption does not apply to the first few age intervals
- There are several formulas to produce the nLx value for the first few age groups
- At the other age extreme, $100+$ in the life table, another formula is used


## 6. Years lived in current and

 subsequent age intervals $\left(T_{x}\right)$- Total number of years lived by the population in the age interval and in all subsequent age intervals ( $T_{\chi}$ )
- We sum ${ }_{n} L_{x}$ from the oldest age backwards to get $T_{x}$

$$
T_{x}=\sum_{i=x}^{w} L_{i}
$$

$-L_{i}$ : entry $i$ in the ${ }_{n} L_{x}$ column
$-\sum^{w}$ : sum of the ${ }_{n} L_{x}$ column starting at entry $x$ through $\sum_{i=x}$ the last ${ }_{n} L_{x}$ entry ( $w$ )

## Example of $T_{x}$

- Example of U.S. life table in 2010

$$
\begin{gathered}
T_{95}={ }_{5} L_{95}+{ }_{5} L_{100} \\
T_{95}=24,670+4,542 \\
T_{95}=29,212
\end{gathered}
$$

## 7. Remaining life expectancy $\left(e_{x}\right)$

- Average number of years of life remaining at the beginning of the age interval $\left(e_{x}\right)$
- It provides life expectancy at any age

$$
e_{x}=T_{x} / I_{x}
$$

- Example of U.S. life table in 2010

$$
\begin{aligned}
e_{0} & =T_{0} / I_{0}=7,866,027 / 100,000=78.7 \\
e_{25} & =T_{25} / I_{25}=5,388,260 / 98,483=54.7
\end{aligned}
$$

- Persons aged 25-29 can expect to live an additional 54.7 years


## References

Poston DL, Bouvier LF. 2017. Population and Society: An Introduction to Demography. New York: Cambridge University Press. 2nd edition. Chapter 7 (pp. 163-214).

Wachter KW. 2014. Essential Demographic Methods. Cambridge: Harvard University Press. Chapter 7 (pp. 153-173).


[^0]:    Source: Human Mortality Database (HMD) [accessed 29 June 2013].

