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Population forecasts are used by governments and the private sector for planning,
with horizons up to about three generations (around 2100) for different purposes. The
traditional methods are deterministic using scenarios, but probabilistic forecasts are
desired to get an idea of accuracy, assess changes, and make decisions involving risks.
In a significant breakthrough, since 2015, the United Nations has issued probabilistic
population forecasts for all countries using a Bayesian methodology that we review here.
Assessment of the social cost of carbon relies on long-term forecasts of carbon emissions,
which in turn depend on even longer-range population and economic forecasts, to 2300.
We extend the UN method to very-long range population forecasts by combining the
statistical approach with expert review and elicitation. While the world population is
projected to grow for the rest of this century, it will likely stabilize in the 22nd century
and decline in the 23rd century.

© 2021 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Governments use population forecasts at all levels (na-
ional, regional, city, international) for planning purposes,
roadly defined. The basic purpose of government is to
rovide services for citizens, and this requires knowing
ow many people there will in the future, often broken
own by age, sex and other characteristics, such as race
nd geography.1 Population forecasts are also widely used
n the private sector for strategic planning, and by aca-
emics and other researchers, particularly in the health
nd social sciences.
Here we focus on national and international popula-

ion forecasts by age and sex. For some countries, these

✩ This is a invited paper.
∗ Corresponding author.

E-mail address: raftery@uw.edu (A.E. Raftery).
1 Demographers often use the term population projections rather

than forecasts. Projections are made under specific assumptions, and
forecasts are projections made under assumptions designed to be
realistic (Keyfitz, 1972). The distinction is blurry at best (except when
projections are not designed to be realistic).
ttps://doi.org/10.1016/j.ijforecast.2021.09.001
169-2070/© 2021 The Author(s). Published by Elsevier B.V. on behalf of Inte
he CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
are produced by national governments. The United Na-
tions is the main organization that produces regularly
updated estimates and forecasts of the population; it pro-
duces estimates of the population since 1950 and fore-
casts to 2100 for all countries by age and sex. These have
been published since 1953 in a publication called the
World Population Prospects, updated every two years to
incorporate the most recent data and improved methods,
most recently in 2019 (United Nations, 2019a). These es-
timates and forecasts are used throughout the UN system,
including as part of the process for monitoring develop-
ment goals, notably the Sustainable Development Goals
(SDGs), which are targets for 2030 agreed by all countries,
succeeding the Millennium Development Goals (MDGs)
for 2015. The forecasts are used as inputs to global mod-
eling, such as for food security and climate change. Many
countries also use them for their national planning.

At first sight, it may seem absurd to issue forecasts of
the population to 2100, when forecasting other quantities
such as unemployment or inflation over much shorter

periods is so difficult. However, population is a system
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ith considerable inertia, making it possible to make rea-
onable forecasts over long time horizons. The effective
ime unit for population forecasting is the generation,
hich is about 27 years, so forecasts to 2100 are for
bout three time units ahead, which no longer seems so
opeless.
National governments typically forecast about 40-50

ears into the future; for example, as of 2020, the US
ensus Bureau projects the population of the USA 40 years
nto the future (Vespa, Medina, & Armstrong, 2020), while
he Japanese government projects 50 years into the fu-
ure (National Institute of Population and Social Security
esearch, 2017). This is about the longest forecast lag
eeded for major national questions of infrastructure and
ersonnel planning. The US Social Security Administration
orecasts its budget up to 75 years into the future, which
nvolves mortality and other population forecasts for that
orecast horizon (Social Security Administration, 2020).

Multinational organizations often project farther into
he future; for example, the EU projects its population to
100 (Eurostat, 2020). The UN also forecasts to 2100, to
e able to assess the implications of population change for
ther long-term trends influenced by population, such as
ood security and climate change.

The UN’s population forecasting track record is sur-
risingly good. For example, in 1958, the UN issued some
irst-world population forecasts for 2000 or later. This
eriod of 42 years turned out to be one of consider-
ble population volatility, with life expectancy increasing
nd fertility rates declining dramatically, and the world
opulation roughly doubling. Population forecasting over
his period was thus exceptionally difficult. Nevertheless,
he UN’s 1958 forecast of the world population in 2000
as accurate to within 4% (Keilman, 2019). Even more
trikingly, the UN’s 1963 forecast of the world population
n 2000 was 6,130 million (Keyfitz, 1972), while the actual
umber was 6143 million (United Nations, 2019a), an
rror of just 0.2%.
For assessing the social cost of carbon, much longer

orecast horizons are needed, and here we develop meth-
ds for probabilistic population projection up to 2300
or this purpose. Note that we use ‘‘projection’’ rather
han ‘‘forecast’’ when referring to times after 2100, as for
uch long time horizons projections depend critically on
ssumptions whose validity cannot be verified empirically
nd is more a matter of expert review and elicitation.
or going this far into the future, we develop a method
hat combines statistical models with expert review and
licitation.
Population forecasts have traditionally been produced

y a deterministic mathematical method called the
ohort-component method, which has been the dominant
ethod since the 1940s. Uncertainty has usually been
ommunicated, not by statistical measures such as stan-
ard errors and confidence intervals, but by subjectively
etermined scenarios. These are hard to interpret, and
hey lack statistical or probabilistic validity.

The demand for probabilistic population forecasts is
riven by the desire for a general sense of forecast ac-
uracy, the need to assess the reality of changes in pop-
lation forecasts and estimates over time, and to make
74
decisions taking account of risks. In recent decades, prob-
abilistic forecasts have become standard in other fields
such as economics and infectious disease epidemiology.
The continued use of scenarios in demography may be
because it was one of the first disciplines to produce
rigorous quantitative forecasts and needed to assess un-
certainty before statistical uncertainty assessment had
fully matured. The use of scenarios became the stan-
dard way of doing things in demography starting in the
1940s (Whelpton, 1936) and probabilistic methods for
uncertainty in population estimates and forecasts have
only begun to make inroads in practice in the past decade,
although academics have been calling for them for far
longer (Bongaarts & Bulatao, 2000; Keyfitz, 1972).

The purpose of our article is two-fold: first to provide
a self-contained review of recently developed methods
for probabilistic population projections, and second to
develop new methods that extend these to very long
time horizons. We start by providing an overview of the
dominant methods of demographic forecasting over the
past 80 years, and a discussion of their limitations, notably
their strong reliance on expert forecasts and their lack of
a statistically-based assessment of uncertainty. We then
review the development of practical statistically-based
probabilistic population projection methods over the past
decade that overcome these limitations and are now used
by the UN for their official population projections for
all countries to 2100. Finally, we develop new methods
that extend the probabilistic projections to 2300 for use
in assessing the social cost of carbon. This is done by
combining the statistical methods with expert review and
elicitation, by incorporating probabilistic forecasts of in-
ternational migration, and by including constraints that
avoid unrealistic outcomes over such a long time horizon.

The article is organized as follows. In Section 2 we
review the standard deterministic and scenario-based
methods for population forecasting, along with some of
the associated issues. In Section 3 we describe the
Bayesian probabilistic population forecasting method now
used by the UN. In Section 4 we describe our extension of
these methods for very long-term probabilistic population
projections to 2300, motivated by the problem of assess-
ing the social cost of carbon, while in Section 5 we give
results of these methods. We conclude with a discussion
in Section 6.

2. Population projections

We now outline some of the basic concepts of popu-
lation projections. The cohort-component method of pop-
ulation projection (CCMPP) was first outlined by Canann
(1895), and developed in more detail by Whelpton (1928,
1936). It became the standard method used by the U.S.
Census Bureau starting in the 1940s, and subsequently
spread around the world. It is now used by most na-
tional agencies producing population forecasts. It is a
deterministic (i.e., non-probabilistic) method, but, as we
will see, it is nevertheless at the root of the probabilistic
method that we describe here. The accounts of Canann
and Whelpton were largely descriptive and numerical. At
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he same time, the method was formalized mathemati-
ally by Leslie (1945), using what became known as the
eslie matrix as its basic concept.
Here we give a brief and simplified overview of the

ethod. For a fuller account, see Preston, Heuveline, and
uillot (2001). The three components of population
hange are births, deaths and migration. These happen
n continuous time, but they are typically aggregated to
ime periods. As a result, most demographic data (counts
f births, deaths and migration events) refer to discrete-
ime such as years or five-year periods. The mathematics
f the underlying continuous-time processes are rela-
ively simple and elegant (Pollard, 1969; Sharpe & Lotka,
911). Methods for analyzing the discrete-time data avail-
ble to demographers, however, unavoidably involve ap-
roximations that can be somewhat complicated and
nelegant.

.1. Mortality rates

We first consider the situation where survival prob-
bilities and fertility rates are assumed known and con-
tant over time for a population. For simplicity, we
onsider only one sex (female). Suppose the probability
hat a woman aged x survives to age x+n is nsx. The cases
ost considered are n = 1 and n = 5, where death data
re reported in one-year or five-year time periods and the
ge groups considered are one year or five years of age.
An important related concept is the mortality rate

etween ages x and x + n, denoted by nmx and defined
s the expectation of the number of deaths between ages
and x + n divided by the number of person-years lived

rom age x to age x + n. If the mortality rate is constant
ithin the age interval, then nsx = exp(−n × nmx).
he mortality rate is never actually constant with respect
o age, so this relationship is only approximate, but the
pproximation is usually good. In demography, a rate is
efined as the expected or actual number of events during
period, divided by the number of person-years at risk of
he event during the period.

The life expectancy at birth can be derived as a func-
ion of either nsx or nmx for all age groups [x, x + n). Life
xpectancy at birth is an important summary of mortality
t all ages, and has the advantage that when estimated
rom a population it does not depend on the population’s
ge structure.

.2. Fertility rates

The age-specific fertility rate for ages x to x+ n, nFx, is
efined as the expected number of births to women aged
to x+n divided by the number of person-years lived by
omen aged x to x+ n. An important summary measure

s the total fertility rate (TFR), defined as

FR = n×
∑

all age groups [x, x+ n]
nFx. (1)

The TFR is interpreted as the number of children a woman
would bear if she survived the reproductive interval (i.e.
typically to age 49), and experienced at each age interval,
x to x+ n, the current age-specific fertility rate nFx. It has
the advantage that it is age-standardized and so does not

depend on the age distribution of the population.

75
2.3. International migration

We now turn to migration. For national population
projections, what matters is international migration,
rather than internal migration. The definition of an inter-
national migration event is not uniform. Still, the most
used definition is one that has been given by the UN,
namely that it happens when a migrant moves from
one country to another and stays there for at least 12
months (UN Department of Economic and Social Affairs,
1998, p. 10). International migration is an issue that gives
rise to strong feelings in many countries and generates
a great deal of political discussion and policy analysis.
Despite this, it is a relatively rare event and only about
3.5% of the world’s population are currently living in a
country other than their country of birth (UN Population
Division, 2019). Nevertheless, it can have a significant
impact on the population in the long term.

A difficulty with international migration flows is that
much of the data on them is of poor quality (Azose &
Raftery, 2019). Official estimates of migration flows of-
ten have large biases and measurement errors, resulting
in considerable uncertainty that is sometimes not fully
acknowledged in official publications. This uncertainty
makes it difficult to use more refined quantities in fore-
casts, such as immigration and emigration separately, or
bilateral flows between specific pairs of countries.

Net migration can be estimated with some reliabil-
ity for many countries for intercensal periods from the
so-called residual method, which consists of taking the
population distribution by age and sex from a census,
projecting it forward to the next census using measured
or estimated births and deaths (for example, from vital
registration records), and comparing the resulting pro-
jected age distribution to the one measured in the next
census. The difference is attributed to international mi-
gration, and yields an estimate of the net migration flow
by age in the intercensal period (Siegel & Hamilton, 1952).
Immigration and emigration are harder to estimate sepa-
rately, which has been another motivation for using net
migration.

Because of these data issues, the UN uses net migra-
tion flows in producing their population forecasts for all
countries. The UN defines the net migration rate for a
country in a five-year period as the number of immigrants
minus the number of emigrants over the period, divided
by the average population. Note that, strictly speaking,
this is not a rate by some demographic definitions, since
the denominator is not the population at risk of the event.
However, this definition has been useful in analysis, since
more populous countries tend to have larger numbers
of both immigrants and emigrants than less populated
countries.

It has been pointed out that net migration can have
difficulties for some purposes, such as setting migration
policy, and also has the analytical issue that the age
structure of immigration can be different from that of em-
igration (Rogers, 1990). However, for the specific purpose
of population forecasts, these issues have not generally
been viewed as serious enough to require sacrificing the

analytic simplicity of net migration. This is partly because
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he age structure of international migration is very con-
entrated, with most of it happening between 15 and
5 years of age, so overall results tend not to be too
ensitive to fine-grained differences in the age structure.
n the context of subnational migration forecasting, Pit-
enger (1974) and Shroeder and Pittenger (1983) devel-
ped model age schedules for net migration and showed
hem to be useful in practice.

Estimating migration is one of the biggest outstand-
ng problems in demography, and some progress has
een made recently (Raymer, Guan, & Ha, 2019; Raymer,
iśniowski, Forster, Smith, & Bijak, 2013). Generally, the
ost reliable direct measures of international migration
re stocks from the census, namely the number of people
orn in one country currently living in another. However,
hese stocks do not give us direct, reliable estimates of bi-
ateral flows. A method has been developed that leverages
tocks using censuses from all countries, and not just the
ountry of interest, to give minimum estimates of bilateral
lows (Abel, 2010, 2013; Abel & Sander, 2014). This was
big step forward, but sometimes resulted in significant
nderestimates. A pseudo-Bayes method was developed
ore recently that gives more accurate estimates (Abel &
ohen, 2019; Azose & Raftery, 2019). Also, some promis-
ng results have been found using email, mobile phone,
ocial media and other Big Data to estimate international
igration (Alexander, Polimis, & Zagheni, 2020; Zagheni,
arimella, Weber, & State, 2014; Zagheni & Weber, 2012;
agheni, Weber, & Gummadi, 2017).

.4. The cohort-component method of population projection

We now introduce the cohort-component method of
opulation projection (CCMPP). We simplify notation by
iving results for one-year age groups and one-year time
eriods. Thus the subscript n in nsx and nFx will be taken
o be n = 1 and suppressed. This will work with no
hange if projections are in n-year periods for n-year age
roups. Then everything is in terms of the n-year periods.
or example, the UN generally produces projections for
ive-year periods and five-year age groups. There are two
xceptions, for the youngest and oldest age groups, so that
he UN often uses the age group set 0, 1–4, 5–9, . . ., 100+,
here the latter refers to people aged 100 or more. This

eads to some solvable technical complications.
The key concept underlying the CCMPP is the demo-

raphic balancing equation, namely:

t+1 = Nt + Bt − Dt + Gt , (2)

here Nt is the population at time t , Bt is the number
births, Dt is the number of deaths, and Gt is net migration,
defined by Gt = It − Et , where It is the number of
immigrants and Et is the number of emigrants, all in the
time interval (t, t + 1]. Unlike most equations in social
cience, Eq. (2) is exact, giving a potentially physics-like
igor to some of the calculations underlying population
orecasts.

To be able to make projections based on Eq. (2), we
eed to introduce age. To do this, let Nx,t denote the
opulation of age x = 0, 1, . . . , (A − 1)+ in year t , and
= (N ,N , . . . ,N )T . Initially, consider only one
t 0,t 1,t A−1,t

76
sex (female), and assume that the population is closed to
migration. Then

N0,t+1 ≈

A−1∑
x=1

F̃xNx,t , (3)

where F̃x is the expected number of female births to a
woman aged x last birthday, who survive to time t + 1.
Note that F̃x is an adjusted version of the age-specific
ertility rate Fx, which refers to female births only, and
akes account of the fact that some women aged x may
ie before time t + 1, and so may not contribute a full
erson-year of exposure, and that some babies may die
efore time t + 1.
We can then project the number of women aged x+ 1

t the next time period using the relationship

x+1,t+1 = sxNx,t , (4)

ith an adjustment for the highest age group. Eqs. (3) and
4) can then be written in matrix form as

t+1 = L N t , (5)

here

=

⎡⎢⎢⎢⎢⎣
0 F̃1 F̃2 · · · F̃A−2 F̃A−1
s0 0 0 · · · 0 0
0 s1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · sA−2 sA−1

⎤⎥⎥⎥⎥⎦ . (6)

n Eq. (6), L is the Leslie matrix (Leslie, 1945).
This leads to remarkably simple expressions for the

omplicated business of projecting populations by age.
e have seen that Eq. (5) can be used to project one
eriod ahead. To project k periods ahead, we use the
qually simple equation

t+k = LkN t . (7)

q. (7) is the CCMPP in its simplest form.
To account for migration in the CCMPP, let GF

t be the
ector of age-specific net numbers of female migrants in
he period (t, t+1]. Migration is a continuous process over
he time period, and incorporating it generally requires
discrete-time approximation. One such approximation

s to assume that half the net migration happens at the
eginning of the interval, and half at the end. Then

t+1 = L
(
N t +

GF
t

2

)
+

GF
t

2
. (8)

It is possible to account for the continuous nature of
migration using Integral Projection Models (Easterling,
Ellner, & Dixon, 2000), but this is much more complicated
than the CCMPP.

2.5. Issues with the CCMPP

Overall, the CCMPP has worked well over time. How-
ever, there are issues with the CCMPP, some of which are
important, while others do not matter much in practice.

The CCMPP, as we have described it, is a one-sex
model. Explicitly accounting for both sexes complicates
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ormalism, but the basic approach still applies. Instead of
age groups, there are 2A age-sex categories, and the fer-

tility rates are coded as zero for males. The Leslie matrix
is then a 2A × 2A matrix. The additional key quantity is
the sex ratio at birth, and given that, births are distributed
between males and females, and survived as before.

A second issue is that the CCMPP is deterministic,
but the reality is stochastic. In particular, in the CCMPP,
the numbers of births and deaths are taken as deter-
ministic and equal to their expectations, whereas these
numbers have at least binomial variation. The CCMPP
ignores this. However, the human populations analyzed
by demographers are usually large, and then the binomial
or Poisson variation is very small relative to other sources
of uncertainty, so the deterministic model is a reasonable
approximation. In practice, the stochastic variation makes
little difference when the total population analyzed is
over 100,000, but can be important to consider when the
total population is under 20,000.

A third, and much more consequential issue, is that
fertility and mortality rates vary over time. If future fer-
tility and mortality rates vary, but are assumed known,
then the Leslie matrix L depends on time and becomes Lt
or time period t . Then the simplest projection equation
7) becomes

t+k =

(
k−1∏
i=0

Lt+i

)
N t . (9)

owever, in practice, future fertility and mortality rates
re unknown and uncertain. Indeed, this is the largest
ource of uncertainty in real-life population forecasts, and
ill be the major focus of our work here.
Another issue is that in many countries, the num-

ers of births and deaths in the past are not known
ccurately. Of the world’s 201 countries with populations
ver 100,000 in 2019, only about 50 have long-standing
igh-quality vital registration systems, and for these, the
stimated numbers of births and deaths can be viewed as
ighly accurate. For the other countries, the numbers of
irths and deaths have been far less accurate. For most
ountries, even including those with good vital registra-
ion systems, direct estimates of international migration
ave not been of good quality. There are various demo-
raphic methods for improving estimates of births, deaths
nd migration by reference to the full range of available
emographic information (Abel, 2013; Azose & Raftery,
019; Preston et al., 2001; Wheldon, Raftery, Clark, &
erland, 2013, 2015, 2016). Thus uncertainty about past
stimates is a component of uncertainty about future
opulation quantities and is rarely taken into account;
n exception is Liu and Raftery (2020). Here we won’t
ocus on this issue and will consider forecasts conditional
n past estimates of fertility, mortality, migration and
opulation by age and sex.
An additional issue is that the HIV/AIDS epidemic has

hanged, not just the level of mortality, but also the
attern of age-specific mortality in many countries. Most
auses of death primarily affect the very young and the
ld, but HIV/AIDS is different because it primarily affects
oung to middle-aged adults. Again, we won’t dwell on
77
his issue here; probabilistic population forecasting meth-
ds that account for it have been proposed by Godwin
nd Raftery (2017) and Sharrow, Godwin, He, Clark, and
aftery (2018).
Issues such as these motivate statistical demography,

hich attempts to use modern statistical methods to es-
imate and forecast population quantities, and to take
ccount of uncertainty about them.

. Probabilistic population forecasting

.1. Background

The standard method of population forecasting by na-
ional governments since the 1940s has been determinis-
ic, based on the CCMPP. The UN used this approach up
o 2008 for its official population projections for all coun-
ries, and then shifted progressively to the probabilistic
pproach that we describe here, which it adopted fully in
015 (United Nations, 2015).
A major weakness of the CCMPP is that it requires

pecification of future fertility and mortality rates by the
ser. These are usually produced subjectively by in-house
xperts or panels of experts. The forecasting literature
uggests that, while experts are good at assessing the
elevant science, assembling the required data and evalu-
ting its quality, and designing models for forecasts, they
re not as good at producing forecasts subjectively from
cratch.
Meehl (1954) was the first to document this, showing

hat for many clinical outcomes, simple statistical models
r rules of thumb beat expert forecasts from reputed
linicians in various medical or paramedical fields. His
esults were greeted initially with disbelief and outrage,
nd many tried to disconfirm them, only to find them
upported by their own studies; Meehl (1986) reviews
ome of this subsequent literature. Medicine has now
ully integrated these results, and medical prognoses now
ely on statistical analyses of relevant data, as interpreted
y the practitioner rather than purely on subjective expert
orecasts.

Oeppen and Vaupel (2002) reviewed 70 years of sub-
ective expert forecasts of life expectancy, and found that
hey uniformly performed poorly, systematically under-
stimating future life expectancy. Tetlock (2005) con-
idered expert political forecasts by respected political
cientists, pundits and analysts, and found that they per-
ormed poorly, famously summarizing his findings by
aying that political pundits performed no better than
art-throwing chimpanzees. In follow-up research, Tet-
ock and Gardner (2016) found that a subset of forecasters
o produce good subjective forecasts from scratch. They
re the ones who monitor their forecast performance
ost closely and are most prepared to revise their fore-
asts in light of new information. In a sense, therefore,
hey are the forecasters who behave most like statistical
odels.
The CCMPP approach does not account for uncertainty

sing standard statistical methods such as standard er-
ors or confidence intervals. Instead, it uses scenarios or
ariants. For example, the UN traditionally has published
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igh, Medium and Low variants. The Medium variant cor-
esponds to the expert best guess of future fertility, mor-
ality and migration rates. The High variant corresponds
o the Medium variant, with half a child per woman,
dded to all the future total fertility rates (TFR), while the
ow variant is similar, but with half a child subtracted.
This has the disadvantage of having no probabilistic

asis and thus being hard to interpret. In addition, it leads
o uncertainty statements that are implausible over mul-
iple projection periods or for projections aggregated over
ultiple countries. For example, the UN’s High variant
dds half a child to all the TFR values, and indeed it is
lausible that a future TFR in a given country and a given
ime period could be half a child higher than the best
uess in the Medium variant. However, that’s not what
he High variant says. Instead, it says that TFR will be
alf a child higher in all countries and future time periods
onsidered, a total of over 3000 country-period combina-
ions. If one thinks probabilistically, it is clear that this is
ighly unlikely. Overall, even if the High variant is realistic
or each country-period combination individually, it is
mplausible for multiple countries and periods, including
ggregated quantities over multiple countries, such as
egions, continents, and trading blocs.

Probabilistic forecasts may be desired for several
easons (Raftery, 2016). One is to provide a general assess-
ent of accuracy, which has become a standard expecta-

ion in recent decades for estimates and forecasts in many
ields. Population forecasts became widespread in the
940s, long before statistical assessment of uncertainty
ecame standard, and the lack of them for many popula-
ion forecasts to this day may be due to inertia. Estimates
nd forecasts that started being produced more recently
ypically do come with standard errors or confidence
ntervals.

This is illustrated by the US Census Bureau, three of
hose main activities are the US decennial Census started

n 1790, population projections started in the 1930s, and
he American Community Survey (ACS) started in 2005.
ensus population estimates and population projections
re generally published without statistical assessments
f uncertainty, while in contrast, results from the much
ore recent ACS are usually published with statistical
onfidence intervals.
A second reason is that probabilistic forecasts provide

basis for assessing changes over time. For example, if the
eported TFR goes down by 0.1 children, is it a real change,
r just the kind of fluctuation expected in the normal run
f things?
A third reason is that probabilistic forecasts allow one

o assess differences between outcomes and expectations.
or example, from 2014 to 2018, US life expectancy de-
lined by 0.2 years of life in a four-year period, while
rom 1950 to 2014, it increased by 0.17 years per calendar
ear on average (Bastian, Tejada, Arias, et al., 2020). Is
he virtual lack of change between 2014 and 2020 out of
ine with the range of possibilities that might have been
xpected?
A fourth reason for producing probabilistic forecasts

s that they can be an input to decision-making that
ttempts to limit the risk of an adverse outcome, or to
78
balance these risks against future benefits. For example,
when deciding whether to close a school, we may want to
be sure (for example, with probability 90%) that there will
still be enough space for the children in the area in the
future. A deterministic forecast is not adequate because it
will give only a best guess; if this is the median of likely
outcomes, for example, it will yield a 50% probability of
not having enough space for the children. Adding a rough
‘‘safety margin’’ is a blunt instrument that may lead to
more capacity than is needed and waste resources. In
this case, one wants the 90th percentile of the forecast
distribution of the number of children in the future, and
a probabilistic forecast can give this while a deterministic
one cannot.

3.2. Probabilistic population forecasting methods

The main approaches to producing probabilistic pop-
ulation forecasts include ex-post analysis, time series
methods and expert-based approaches (Bongaarts & Bu-
latao, 2000; Booth, 2006). Ex-post analysis is based on
the errors in past forecasts (Alders, Keilman, & Cruijsen,
2007; Alho, et al., 2006; Alho, Jensen, & Lassila, 2008;
Keyfitz, 1981; Stoto, 1983). The time-series analysis ap-
proach uses past time series of forecast inputs, such as
fertility and mortality, to estimate a statistical time series
model, which is then used to simulate a large number
of random possible future trajectories. Simulated trajec-
tories of forecast inputs are combined via the CCMPP
to produce predictive distributions of forecast outputs
(Lee & Tuljapurkar, 1994; Tuljapurkar & Boe, 1999). In
the expert-based method (Lutz, Sanderson, & Scherbov,
1996, 1998, 2004; Pflaumer, 1988), experts are asked to
provide distributions for each forecast input. These are
then used to construct predictive distributions of forecast
outputs using a stochastic method similar to the time
series method.

Here we will focus on the approach now used by the
UN as part of the basis for its official population forecasts
for all countries. It is most closely related to the time
series approach. It produces probabilistic forecasts of each
of the three components of population change: fertility,
mortality and migration. The first step is to develop sta-
tistical models for the evolution of the total fertility rate
(TFR), life expectancy (e0), and the net migration rate in
a country. Then a large number of trajectories of future
values of the Total Fertility Rate (TFR) for all countries and
future time periods are simulated. Each one is then con-
verted to age-specific fertility rates using model fertility
schedules. We simulate an equal number of trajectories of
life expectancy at birth for females and males, and convert
them to age-specific mortality rates using a variant of
the Lee–Carter method (Lee & Carter, 1992). Finally, an
equal number of trajectories of future net migration in
each country are simulated. We convert each of these
trajectories to a future trajectory of all age- and sex-
specific population quantities using the CCMPP. For any
future population quantity of interest, the resulting set of
values is viewed as a sample from the sought predictive
distribution.



A.E. Raftery and H. Ševčíková International Journal of Forecasting 39 (2023) 73–97

i
n
f
f
s
(

R
s
s
t
b
r
i
m
b
m
c
2
N
j
2
p
t
L
L
r
b
N

f
a
(
i
r

u
t
m
b
f
R
b
L
b
b

3

c
a
I
b
d
T
a
r
a
a

a

t
f

We will give more detail about the model for TFR
n Section 3.3, as fertility is the most important compo-
ent of population change for long-term global population
orecasts (Raftery, Alkema, & Gerland, 2014). The methods
or converting TFR to age-specific fertility rates are de-
cribed by Ševčíková, Li, Kantorová, Gerland, and Raftery
2016).

The model for life expectancy was described by
aftery, Chunn, Gerland, and Ševčíková (2013) for one-
ex life expectancy, while the model for forecasting the
ex gap in life expectancy, and hence the joint distribu-
ion of female and male life expectancy, was described
y Raftery, Lalic, and Gerland (2014). For our illustrative
esults here, life expectancy for countries with general-
zed HIV/AIDS epidemics was projected using the same
odel as used for other countries (Raftery et al., 2013),
ut these countries were not used to help estimate the
odel. This differs from the procedure used by the UN for
ountries with generalized HIV/AIDS epidemics in their
019 projections, which was more complicated (United
ations, 2019b). Finally, male life expectancy was pro-
ected using the gap model (Raftery, Lalic, & Gerland,
014). Each simulated value of future period life ex-
ectancy at birth was broken down into age-specific mor-
ality rates using a rotated, coherent version of the
ee–Carter method (Lee & Carter, 1992; Li & Lee, 2005;
i, Lee, & Gerland, 2013; Ševčíková et al., 2016). More
ecent updates to the life expectancy model are described
y Castanheira, Pelletier, and Ribeiro (2017) and United
ations (2019b).
The UN currently uses a deterministic approach to

orecasting net migration. However, we have developed
probabilistic approach, described by Azose and Raftery

2015) and Azose, Ševčíková, and Raftery (2016). We will
llustrate it in the very long-term forecasting example
esults we give later in the paper.

All methods that we use to generate probabilistic pop-
lation projections are available as R packages for anyone
o use. The bayesTFR R package implements the TFR
odel (Ševčíková, Alkema, & Raftery, 2011), the
ayesLife package implements the forecasting model
or female and male life expectancy at birth (Ševčíková,
aftery, & Chunn, 2019), and the MortCast package can
e used to project age-specific mortality rates (Ševčíková,
i, & Gerland, 2020). Finally, the bayesPop package com-
ines the demographic components into overall proba-
ilistic population forecasts (Ševčíková & Raftery, 2016).

.3. Probabilistic forecasting of the total fertility rate

Over the past 150 years, the evolution of TFR in most
ountries has followed a similar pattern, albeit starting
t different times and proceeding at different speeds.
n 1870, the TFR in most countries was high, typically
etween 4 and 8 children per woman. Then, at times that
iffered by country, the TFR started to decline steadily.
his point typically followed the start of industrialization
nd improvement in child mortality. Eventually, the TFR
eached a point below the replacement level of slightly
bove two children per woman, after which it plateaued
nd fluctuated, often increasing slightly. The replacement
 c
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level is often taken to be 2.1, although the precise value
depends on the mortality level. This evolution is illus-
trated in Fig. 1 by the historical data on TFR in the
Netherlands from 1850 to 2020. In that case, the fer-
tility transition from high to low fertility lasted about
100 years.

The period of decline is usually called the fertility
transition. The overall phenomenon of which it is part,
including the reduction in mortality and the resulting
population changes, is called the demographic transition.
By now, the fertility transition is generally agreed to have
started in all or almost all countries.

We divide this evolution into three phases: Phase I, the
high-fertility pre-transition phase; Phase II, the fertility
transition itself, during which fertility declines to below
replacement level; and Phase III, the low fertility period of
fluctuations, and in some cases turnaround. The fertility
transition has started in all countries, so Phase I is now
entirely in the past and is not of interest for forecasting.
It is therefore not modeled.

3.3.1. Model for TFR during the fertility transition
Empirically, based on the historical experience of 200

countries, the fertility transition follows a common pat-
tern. The fertility decline starts slowly, then accelerates as
the decline gains momentum, then continues to decline at
a fairly constant rate, then decelerates as TFR approaches
the replacement level and finally stops at a point below
the replacement level.

This is a somewhat complicated pattern, but its com-
monality across countries suggests representing its expec-
tation by a parametric function. Considerable success has
been found using a double logistic function, or a sum of
two logistic functions, to model the changes in the TFR.
For our purposes, the general form of this is

g(f ) =
d

1+ exp
[
−

(f−a2)
a1

] − d

1+ exp
[
−

(f−a4)
a3

] , (10)

where f is the current TFR level, g(f ) is the expected
decline in the TFR in the next time period, and d > 0,
i > 0 for i = 1, 2, 3, 4 are the model parameters, with

a4 > a2. The parameter d is an upper bound on the ex-
pected rate of change, a1 represents the time taken for the
upswing, a2 is the middle of the upswing, a3 represents
the time taken for the downswing, and a4 is the middle
of the downswing. The length of the plateau at the top
is largely determined by the difference a4 − a2. This is a
flexible five-parameter functional form that nevertheless
has the general characteristics of the historical change in
TFR observed in all countries.

For modeling the evolution of the TFR, it turns out
that a more interpretable parameterization is as follows
(Alkema et al., 2011, Appendix). It is motivated by the fact
that if we write a single logistic function as

L(f ) =
d

1+ exp
[
−

2 log(p)
∆

(f − f50%)
] , (11)

he parameters have the following interpretations. The
unction increases from 0 to d, the midpoint of the in-
rease is at f , defined as the value of f such that
50%



A.E. Raftery and H. Ševčíková International Journal of Forecasting 39 (2023) 73–97

g
f

T

g

t
u
f
t
l
8
i

e
t
t
g
b
a
d
T
d

i
m

Fig. 1. The three phases of the fertility transition, illustrated by historical data on TFR for the Netherlands from 1850 to 2020. Phase I, in grey, is
the pre-transition phase, Phase II, in red, is the fertility transition from high to low fertility, which took about 100 years, and Phase III, in green, is
the post-transition phase of leveling off and fluctuations.
L(f50%) = d
2 , and ∆ is the length of the interval in which

L(·) increases from 1
p+1d to p

p+1d. Thus setting p = 9
ives ∆ = f90% − f10%, called the 80% range of the logistic
unction.

Motivated by this, we write the expected decline in
FR as a function of current TFR, as follows:

(f ; θ ) =
d

1+ exp
(
−

2 log(9)
△1

(f −
∑4

i=2△i + 0.5△1)
) (12)

−
d

1+ exp
(
−

2 log(9)
△3

(f −△4 − 0.5△3)
) , (13)

where θ = (d,△1,△2,△3,△4). The parameters then have
he following interpretation. The parameter d is still an
pper bound of the expected decline, the midpoint of the
irst logistic function is 0.5∆3+∆4, ∆3 is the 80% range of
he first logistic function, and the midpoint of the second
ogistic function is 0.5∆1+∆2+∆3+∆4. Then ∆1 is the
0% range of the second logistic function. This is plotted
n Fig. 2.

The model is made probabilistic by adding a random
rror term. The model for the evolution of the TFR over
ime in a given country during the fertility transition
hus becomes a random walk with a non-constant drift
iven by the double logistic function. Least-squares dou-
le logistic fits to the changes in TFR for several countries
re shown in Fig. 3. Although the evolutions are quite
ifferent, with a slow decline in India, a fast decline in
hailand, and an incomplete decline to date in Mali, the
ouble logistic function fits each one well.
Ideally, if we had a complete record of the fertil-

ty transition for each country, we would estimate the
odel separately for each country, for example, using
80
nonlinear least squares, as in Fig. 3. However, for high-
fertility countries, such as Mali, only the early part of the
fertility transition has taken place. The number of data
points to inform the model is very small. As a result, for
these countries, any estimate based on data from that
country alone would be very uncertain.

The solution is, for each country, to draw on informa-
tion from other countries, leveraging the fact that the pat-
terns for different countries are similar, differing mainly
in the speed of the transition. We do this by building a
hierarchical model. Conceptually, this works as follows.
The evolution of TFR for each country is assumed to
follow a random walk with a drift that is a double logistic
function of the current level. Each country has its own set
of five parameters for the double logistic function. These
sets of parameters are assumed to be drawn from a world
distribution.

In this way, the world experience of which patterns
of fertility decline are possible is refined by the coun-
try’s own historical experience to date. Also, the point
estimate for a given country is approximately equal to a
weighted average of an estimate based on its data only,
and the world average. Typically, for countries where the
fertility transition is complete or almost complete, such as
Thailand in Fig. 3, the country’s historical experience will
dominate. But for countries where the fertility transition
is at an early stage, such as Mali in Fig. 3, the world
experience will play a more prominent role.

Specifically, the model has three levels. In summary,
Level 1 is the observation distribution,

f = f − g(f ; θ )+ ε , (14)
c,t+1 c,t c,t c c,t
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Fig. 2. The double logistic function for modeling the expected change in the TFR, g(f ), as a function of the current TFR level, f . The TFR level is
shown decreasing, since during the transition, the TFR is typically decreasing, and with this choice, time is generally moving from left to right. The
parameters of the function are country-specific, denoted by the subscript c.

Fig. 3. The least squares fits of the double logistic function to the TFR declines in Thailand and India. Data from Mali are also shown, but the
least-squares fit of the double-logistic function is not, as there were only five relevant data points.
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here fc,t is the TFR for country c in time period t , g(fc,t )
is the expected decline, given by

g(fc,t; θc) =
−dc

1+ exp
(
−

2 log(9)
△c,1

(fc,t −
∑4

i=2△c,i + 0.5△c,1)
)

(15)

+
dc

1+ exp
(
−

2 log(9)
△c,3

(fc,t −△c4 − 0.5△c,3)
) ,

(16)

nd the error term, εc,t has a nonconstant variance that
epends on the current TFR level, so that

c,t
ind
∼ N(0, σ (fc,t )2).

Level 2 specifies the world distribution, namely θc ∼
(·|φ), where θc = (△c,1,△c,2,△c,3,△c,4, dc) is the vector

of the five double logistic parameters for country c. Level
3 specifies the prior distribution on the world parameters,
or hyperparameters φ, namely φ ∼ π (·). The distribution
π (·) is chosen to be diffuse relative to the data distribu-
tion. The Level 2 and Level 3 distributions are given in
detail in Alkema et al. (2011, Appendix).

The overall model is estimated by Bayesian estimation
using Markov chain Monte Carlo (MCMC) sampling from
the posterior distribution. With 201 countries, there are
slightly over 1000 parameters to be estimated. The pa-
rameters are updated one at a time, some using a Gibbs
sampling step, some a Metropolis step, and some with
a slice sampling step (Neal, 2003). Convergence and the
number of iterations are determined using trace plots and
standard MCMC convergence and run-length diagnostics
(Gelman, Rubin, et al., 1992; Raftery & Lewis, 1996).

3.3.2. Model for TFR after the fertility transition
The start of Phase III is defined algorithmically by two

consecutive five-year increases below a TFR of 2. This was
chosen because it corresponds intuitively to the notion of
the end of the fertility transition, and also because it turns
out to satisfy the definition of phases. Phases should be
sequential, with one after the other. When the process
moves from one phase to the next, it should not move
back again later to an earlier phase. Empirically, with this
definition of Phase III, we found that once a country has
moved from Phase II to Phase III by this definition, it has
never moved back to Phase II. Phase III has started in 40
countries or territories so far, including most European
countries and the USA, many of those with Chinese cul-
ture (China, Singapore, Hong Kong, Taiwan, Macao), and
also Japan, Vietnam, Barbados and Aruba (United Nations,
2019a).

Phase III is characterized by movement towards and
fluctuations around a country-specific ultimate fertility
level, µc ; see the green points in Fig. 1 for an example
of the general pattern. This is modeled by a first-order
autoregressive model:

fc,t+1 = µc + ρc(fc,t − µc)+ εc,t , (17)

εc,t
iid
∼ N(0, σ 2

ε ), (18)
where 0 ≤ ρc ≤ 1.
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As was done for the model for Phase II, this is es-
timated using a Bayesian hierarchical model. For each
country there is a vector of two parameters, (µc, ρc). At
the second level of the model, the world level, these two
parameters are modeled as follows:

µc ∼ TN[0,∞)(µ̄, σ 2
µ) (19)

ρc ∼ TN[0,1](ρ̄, σ 2
ρ ), (20)

where µ̄ represents the world mean parameter for the
country-specific asymptotes, σ 2

µ their variance, and
TN[0,∞) denotes a truncated normal distribution. In (20),
ρc is restricted to satisfy |ρc | < 1 to guarantee stationarity
of the time series process, and hence projection intervals
that do not expand indefinitely with forecast horizon.
Also, we assume that ρc ≥ 0, in line with the intuition
and empirical observation that fertility rates in a country
tend to change incrementally over time, and hence are
positively correlated.

Reasonably spread out prior distributions are used for
the parameters σµ, ρ̄ and σρ . However, an informative
prior distribution is used for the world mean parameter,
µ̄, namely

µ̄ ∼ U[0, 2.1]. (21)

Thus the maximum for the ultimate world mean param-
eter is set at approximate replacement total fertility. This
reflects an expert consensus that in the long run, over a
long period, overall average world fertility is unlikely to
significantly exceed the replacement level indefinitely. It
could, however, exceed it for periods because fertility for
many countries is still in Phase II and above this level,
and because this is a constraint on the average of the
distribution of fertility rates, not on the world average
fertility rate itself. Indeed, the average world TFR cur-
rently is about 2.5 (United Nations, 2019a), well above the
replacement level. In fact, it is likely to remain so for a
long period, until most or all countries have reached Phase
III.

3.4. Results: Probabilistic TFR forecasts

We first show example results for fertility, focusing on
France. France had entered Phase III by 2005, following a
steady decline since the 1950s. The TFR in France stopped
declining in the early 1990s, and by the early 2000s, it was
clear that the fertility transition had been completed.

Fig. 4(a) shows three trajectories simulated from the
posterior predictive distribution of TFR for France. It can
be seen that these fluctuate, but they show that it is possi-
ble that TFR could remain fairly steady close to the current
level, that it could remain largely below the current level,
or that it could rise somewhat above the current level.

Fig. 4(b) shows the posterior predictive median and
80% and 95% intervals, along with 50 trajectories shown in
grey. The median is effectively constant at the estimated
long-term asymptote of about 1.85 children per woman,
close to the current level. The limits of the pointwise
95% intervals are about 0.4 children above and below the
median, respectively.

Comparing the left and right panels of Fig. 4 points to

an issue in communicating probabilistic forecasts like this,
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Fig. 4. Probabilistic forecast of TFR for France. (a) Left: Three trajectories from the posterior predictive distribution for 2020–2100. (b) Right: Predictive
median, 80% and 95% predictive intervals, with 50 trajectories shown in grey.
particularly Bayesian ones that take the form of a large
number of simulated possible future trajectories. Both the
historical data and the trajectories in the left panel show
that the evolution of TFR in France has had quite a bit
of jerky stochastic variation in the past. This is likely to
continue in the future. However, the median, or ‘‘best’’
forecast in the right panel is extremely smooth, with al-
most no stochastic variation, as indeed are the predictive
quantiles. Thus the ‘‘best’’ forecast looks unlike all the
trajectories that make up the predictive distribution as a
whole.

Mathematically, of course, this is not a puzzle: the me-
ian forecast is a median of a large number of fluctuating
rajectories, and is smooth because averaging (or taking
edians) smooths out stochastic variation. But from a
ognitive point of view, it can present a challenge. Users
ften focus on the ‘‘best’’ forecast, and can misunderstand
his forecast to mean that future TFR will converge to a
ingle value with little variation around it. A more sophis-
icated, but still incorrect, reading of Fig. 4(b) views the
ime series of limits of the pointwise predictive intervals
s plausible trajectories or scenarios. In fact, a smooth
rajectory that looked qualitatively like, say, the upper
imit of the 80% predictive interval for the 80 years from
020–2100 would be very unlikely.
We have tried to overcome this by first presenting a

mall number of trajectories, as in Fig. 4(a), and only then
resenting the summary results in Fig. 4(b). This seems
o improve understanding somewhat, but how best to
resent such results to users remains an open issue.

.5. Results: Probabilistic population forecasts

Fig. 5 shows the Bayesian probabilistic projections of
ertility, mortality and population for Nigeria using the
ethodology described in this section. Nigeria is the most
opulous country in Africa, and its population is likely
o grow substantially, so the demography of Nigeria is
mportant for the future population of Africa, and indeed
he world as a whole.
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Fig. 5(a) shows that fertility is likely to decline in
Nigeria over the remainder of the century, but there is
considerable uncertainty about how fast that will happen.
This uncertainty is highly consequential for the popula-
tion as a whole, because in Nigeria, fertility is the biggest
driver of population growth. The fertility transition is well
underway but is less than one-third complete. By the end
of the century, the predictive median is that TFR will be
close to the replacement level of 2.1, but it could still be
close to 4. Indeed, it could reach the very lowest levels of
around 1.2 seen in Europe or East Asia.

Fig. 5(b) shows that life expectancy is likely to increase
substantially, but again there is considerable uncertainty
about the speed of the increase. This is less important
than uncertainty about future fertility for the overall pop-
ulation, because changes in life expectancy influence pop-
ulation less than fertility over the forecast horizon of three
generations (a generation is often considered to be about
27 years). Changes in female and male life expectancy are
highly correlated in Nigeria, as in all other countries, and
so we modeled the sex gap in life expectancy, which is
expected not to change too much over time (Raftery, Lalic,
& Gerland, 2014).

We used the deterministic net migration projections
used by the UN (United Nations, 2019a). These usually
amount to assuming that net migration will stay at the
same level in the future as now. Fig. 5(c) shows this
projection for Nigeria.

The trajectories from these projections are combined
using the CCMPP to give a probabilistic population pro-
jection for Nigeria, shown in Fig. 5(d). This shows that
the population of Nigeria is likely to increase dramatically
from its current level of 206 million, with a median pro-
jection of 733 million, 80% prediction interval 423–1149
million, and 95% prediction interval 322–1358 million.
This projected increase is despite the likely decline in fer-
tility, and reflects both the fact that fertility will possible
stay above the replacement level for several decades, and
that the current population is young.

Fig. 6 shows the results for China, currently the world’s
most populous country. These contrast strongly with
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Fig. 5. Probabilistic Bayesian projection of vital rates and population for Nigeria, 2020–2100, based on data from 1950–2020. (a) Top left: TFR
projection. The red line shows the historical data and the median projection. The dark shaded area is the pointwise 80% forecast interval, and the
light shaded area is the pointwise 95% forecast interval. (b) Top right: Life expectancy projection. The dark red line shows the historical data and
the median projection for females, while the dark green line shows the same for males. The pink (green) dark/light shaded areas show the 80%/95%
pointwise prediction intervals for females (males). (c) Bottom left: Net migration (in thousands), historical data and UN deterministic projection
(United Nations, 2019a). (d) Bottom right: Population projection. The red line shows the historical data and the median projection. The dark/light
shaded areas show the 80%/95% pointwise prediction intervals.
those from Nigeria. China completed its fertility transition
several decades ago, and its population is projected to
peak in about ten years. It is then projected to decline
from its current level of 1.44 billion by 26% to 1.06 billion.
By 2100 its population could be as high as 1.34 billion or
as low as 820 million (95% prediction interval).

Fig. 7(a) shows the resulting projection for the world
s a whole. The world population is projected to increase
rom its current 7.8 billion to 10.9 billion in 2100, with
5% prediction interval 9.4 to 12.7 billion. There is very
ittle uncertainty up to 2050, with uncertainty growing
ast in the second half of the century. Indeed, the growth
f the prediction error variance is superlinear, much faster
ven than the linear growth that would be expected with
nonstationary random walk process. This reflects that
ost of the uncertainty comes from births after 2020,
ccounting for a minority of the world’s population in
050, but most of it in 2100.
Fig. 7(b) shows the projections for the continents. The

opulation of four of the five continents is expected to
eak and then decline. The exception is Africa, which is
84
expected to roughly quadruple this century. These results
update those of Gerland, et al. (2014), but the results
remain qualitatively similar.

4. Very long-term probabilistic population projections
for assessing the social cost of carbon

4.1. Background

The social cost of carbon is a tool for quantifying the
societal damage from emitting a given amount of carbon
in the atmosphere, and informs billions of dollars of policy
decisions. The U.S. government has developed a method-
ology for estimating the social cost of carbon, and has
used it to assess the effect of its regulatory measures on
climate change; its methodology is used by several other
governments.

In 2017, the National Research Council (NRC) of the
National Academies of Science, Engineering and Medicine
carried out a comprehensive review of options for up-
dating the methodology for estimating the social cost of
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Fig. 6. Probabilistic Bayesian projection of vital rates and population for China, 2020–2100, based on data from 1950–2020. (a) Top left: TFR
rojection. The red line shows the historical data and the median projection. The dark shaded area is the pointwise 80% forecast interval, and the
ight shaded area is the pointwise 95% forecast interval. (b) Top right: Life expectancy projection. The dark red line shows the historical data and
he median projection for females, while the dark green line shows the same for males. The pink (green) dark/light shaded areas show the 80%/95%
ointwise prediction intervals for females (males). (c) Bottom left: Net migration (in thousands), historical data and UN deterministic projection
United Nations, 2019a). (d) Bottom right: Population projection. The red line shows the historical data and the median projection. The dark/light
haded areas show the 80%/95% pointwise prediction intervals.
Fig. 7. Aggregate Bayesian probabilistic population projections. (a) Left: Projection of world population, 2020–2100. The red line shows the historical
data and the predictive median. The dark/light shaded areas show the pointwise 80%/95% prediction intervals. (b) Right: Projections for each continent.
carbon (National Research Council, 2017). Resources For
the Future (RFF), a Washington, D.C.-based think tank, is
85
leading a multidisciplinary research initiative to advance
the NRC recommendations.
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Any assessment of the social cost of carbon depends
n future economic and population trends, which drive
conomic activity, and hence carbon emissions. One of
he objectives of the RFF initiative is to revise projections
f population growth to reflect key uncertainties better.
ecause the impact of carbon emissions is so long-lasting,
t is desirable to project them far into the future. The
ost widely used current projections are those by the

ntergovernmental Panel on Climate Change (IPCC) (In-
ergovernmental Panel on Climate Change, 2014), and
hese go to 2100. However, the National Research Council
2017) has suggested that projections to 2300 are needed.

The IPCC projections are based on expert opinion-
ased scenarios for future economic and population
rowth, but these do not provide a full assessment of
he relevant uncertainties, and do not have a probabilistic
nterpretation (National Research Council, 2017). The IPCC
rojections were produced in 2014, at which point there
ere no official probabilistic population projections for
he world and its countries, which may partly explain
hy it did not produce probabilistic projections of carbon
missions.
However, in 2015 for the first time, the UN produced

fficial probabilistic population projections for all coun-
ries to 2100 (United Nations, 2015), using the Bayesian
ethodology described in Section 3. Raftery, Zimmer,
rierson, Startz, and Liu (2017) developed probabilistic
rojections of carbon emissions and global temperature
ncrease to 2100. The methodology was used by Liu and
aftery (2021) to address the question of what emissions
eductions would be needed to meet the objective of
eeping global average temperature increase to below 1.5
r 2 ◦C with a given probability.
We now consider how to extend the UN probabilistic

opulation projections to 2300 to use as inputs to the
ssessment of the social cost of carbon. There are few ex-
ant population projections beyond 2100. We are aware of
hree, all of which are deterministic and not probabilistic,
nd do not include an assessment of uncertainty (Basten,
utz, & Scherbov, 2013; United Nations, 2004; Vallin &
aselli, 1997).
As a first step, we extended the UN’s current statistical

odel for projecting to 2100 (United Nations, 2019a) to
300 without substantial methodological modification. In
second step, the results were reviewed by a panel of
emographers convened by the RFF. In a third step, the
rojections were modified in light of their opinions.
The resulting methodology is a combination of sta-

istical modeling and expert review and elicitation in a
articular way that seems to be successful in this case. A
tatistical model is developed, the resulting forecasts are
eviewed by experts and are then modified in light of the
xpert opinions. This is different from purely subjective
xpert forecasts from scratch, and has the potential to
ombine the strengths of both approaches, particularly for
ery long-term forecasts where purely statistical methods
re harder to validate.
Three of the panel’s critiques of the first version of

ur methodology were particularly salient. The first was
hat the predictive distribution of world average total
ertility rate (TFR) from the purely statistical model was
86
too narrow for projections so far into the future. To reflect
this, we added a variance component, modeled as an ad-
ditional country-invariant random walk, to the simulated
values of TFR for all countries.

The second critique was that the UN’s determinis-
tic international migration assumption was inadequate
and that international migration should also be modeled
probabilistically. In response to this, we incorporated a
previously developed probabilistic model for international
net migration (Azose & Raftery, 2015; Azose et al., 2016).
However, this models total net migration without ref-
erence to population age structure. For the period from
2020 to 2100 this works reasonably well as an approxi-
mation, but by 2300 we can expect substantial population
aging. Since international migration tends to be concen-
trated at younger ages, broadly between 15 and 35, this
population aging is likely to lead to a long-term reduction
in migration. We further modified the method to account
for this.

The third critique was that some trajectories from the
Bayesian predictive distribution led to populations for
some countries that were too large. Our first-step method
already incorporated an upper limit on population den-
sity, but the comment was made that this was not low
enough for some countries with larger geographic areas.
In response, we modified our method to include an up-
per limit on population that depends on both population
density and geographic area.

4.2. Projecting total fertility to 2300: Bayesian hierarchical
model with expert review and elicitation

In our first step, a Bayesian hierarchical model for TFR
was estimated as in the standard UN approach described
above, using the bayesTFR R package (Ševčíková et al.,
2011). The same MCMC-sampled values of the model
parameters were used as for the standard 2100 projec-
tions. Using 2300 as the end year, TFR was projected by
generating 1000 trajectories of future values for all coun-
tries. Spatial correlation between countries was taken into
account (Fosdick & Raftery, 2014).

The RFF’s panel of expert demographers felt that the
resulting uncertainty about long-term future world aver-
age TFR was understated. The 95% interval from the model
for world average TFR in 2300 was 1.66–2.23, and the
panel felt that the lower bound was too high, as lower
values were possible. They thought that the upper bound
was reasonable. Here we first lay out a rationale for a
specific lower bound, based primarily on comments from
one member of the expert panel. We then describe the
modified statistical method used to achieve it.

4.2.1. Lower bound on world average TFR in 2300
In the context of the review, a lower bound was pro-

posed based on the observation that several countries,
especially in Southern Europe and Eastern Asia, have had
a sustained TFR lower than 1.66 for some decades, and the
argument that this is one possible path for world average
TFR in the very long term (Basten, 2013; Basten et al.,
2013; Lutz, Skirbekk, & Testa, 2006; Reher, 2019).
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There are several countries or territories (Italy, Spain,
kraine, Taiwan, South Korea, Singapore, Hong Kong)
here period TFR has been below 1.5 since 2000 and the
FR recovery has been either absent or shallow so far. This
aises the possibility that some countries and regions may
xperience deeper and more protracted fertility declines
ollowed by a slow and shallow TFR recovery, with the
esulting long-term TFR below 1.6, and possibly between
.2 and 1.5. Italy and Spain have now recorded more than
0 years with a period TFR below 1.5.
Further evidence is provided by considering the coun-

ries with the lowest cohort TFR, measured as the com-
leted fertility rates among women born in 1976. For
ixteen countries, this is below 1.66 (Human Fertility
atabase, 2019; Vienna Institute of Demography, 2018;
oo & Sobotka, 2018). Hong Kong is the lowest with 1.15
hildren, and Spain is the second-lowest with 1.35, while
further five countries had completed fertility below

.5 (among the 201 countries with a population above
00,000 in 2019). This again suggests that a lower bound
f 1.66 is too high, but it also suggests that a lower bound
f 1.2 is likely low enough to encompass most realistic
ossibilities.
In addition, a world average TFR of 1.2 from 2250, by

hen the demographic transition would likely be com-
lete in all or almost all countries, implies a reduction
f the world population by about 40% per generation.
his would produce a reduction of 85% in one century
nd 98% in two centuries, a rapidly aging population and
n inverted age pyramid. The human species would then
e on a path to extinction. It seems at least plausible
hat humanity would act collectively or individually well
efore that point to avoid such an outcome, and that TFR
ould not stay as low as 1.2 for very long. This is a further
rgument for 1.2 being low enough to serve as a lower
ound for world average TFR in the very long term.

.2.2. Projection of TFR to 2300
The unmodified Bayesian hierarchical model gives a

5% prediction interval for world average (population-
eighted) TFR, or WTFR, in 2300 of [1.66, 2.23]. As we
ave noted, the RFF’s panel of demographers agreed that
he upper bound of 2.23 is reasonable, but felt that the
ower bound of 1.66 is too high over the period of about
en generations into the future to 2300.

We, therefore, developed a method for modifying the
rojections for the period 2100–2300. It consists of adding
globally defined and simulated random walk to all

ountry-specific trajectories for the period 2100–2300.
he basic idea is to add to all TFR trajectories a global
andom walk (the same for all countries, but different
or each MCMC trajectory). The unmodified posterior pre-
ictive distribution of WTFR stabilizes around 2250 and
emains stable from 2250 to 2300. This corresponds to the
rojection that the fertility transition is likely to be largely
omplete around the world by 2250. Thus the random
alk would operate between 2100 and 2250, a 150-year
ime interval consisting of 30 five-year time periods. The
ean and variance of the random walk are defined so that

he uncertainty in 2250 would be inflated to the desired
xtent, and the mean would also change accordingly.
87
Note that, if a random walk is given by Y0 = 0, and

Yt = Yt−1 + µ+ εt ,

here εt
iid
∼ N(0, σ 2), then its expectation at time t is

[Yt ] = tµ, and its variance at time t is Var[Yt ] = tσ 2.
Since we want the distribution to stabilize in 2250, we
would set Yt = Yt−1 for years between 2250 and 2300.

We find µ and σ as follows. Let ft be WTFR in year
t , and let fj,t be simulation j of WTFR in year t from
the initial MCMC run, for j = 1, . . . , J , where J is the
number of MCMC samples. Also, let f̄ = E(f2245−2250) and
V = Var(f2245−2250) from the initial MCMC run. Suppose
the target (lower and upper) .025 and .975 quantiles for
f2245−2250 are L∗ = 1.20 and U∗ = 2.23.

We use the following iterative algorithm for determin-
ing µ and σ :

1. Set initial values for µ and σ . We chose these as
µ = −0.00575, σ = 0.0353.

2. Compute L′ and U ′ by running the population model
with the random walk added to the country-
specific TFRs for each trajectory.

3. Set µnew = µ+ [(L∗ + U∗)/2− (L′ + U ′)/2]/30.
4. Set σnew = σ

(
U∗−L∗
U ′−L′

)
.

5. Set µ←− µnew and σ ←− σnew.
6. If |L′ − L∗| < .005 and |U ′ − U∗| < .005, stop.
7. Otherwise, go to step 2.

To generate the probabilistic projections of TFR for all
countries to 2300, we proceed as follows. Let fj,c,t denote
the simulated TFR for country c in time period t in trajec-
tory j of the MCMC algorithm. Let t here denote five-year
time periods starting at 2100. Thus t = 1 corresponds
to the time period 2095–2100, t = 2 corresponds to
2100–2105, and t = 41 corresponds to 2295–2300.

In summary, our algorithm is as follows. For each
trajectory j from the MCMC algorithm, and for t spanning
the period 2100–2300, replace fj,c,t by f ′j,c,t , where f ′j,c,t is
simulated as follows:

1. Simulate the global random walk Yj,t :

(a) Let Yj,1 = 0, corresponding to the period
2095–2100.

(b) For t = 2, . . . , 31 (with t = 31 correspond-
ing to 2245–2250), simulate Yj,t as follows:

Yj,t = Yj,t−1 + µ+ εj,t ,

where εj,t
iid
∼ N(0, σ 2).

(c) For t = 32, . . . , 41, let Yj,t = Yj,t−1.

2. Calculate the replaced simulated TFR, f ′j,c,t as fol-
lows: For each country c and each time period from
2100–2105 to 2295–2300, let f ′j,c,t = fj,c,t + Yj,t .

Finally, the sex ratio at birth was assumed to be con-
stant at the 2100 level from United Nations (2019b) until
2300.
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.3. Projecting Net International Migration to 2300

For projecting net migration to 2100, the UN uses a
eterministic approach that assigns values for the first
ew five-year periods after 2020 using available infor-
ation, and then assumes that net migration remains
onstant thereafter. This was used in the first version of
ur method. This approach was criticized by the RFF’s
anel of demographers as understating uncertainty in a
ay that may be particularly important for assessing fu-
ure carbon emissions, since carbon emissions per capita
re much higher in more developed than less developed
ountries. Migration does not make much difference to
he future total world population. However, migration
lows from less developed to more developed countries
end to be higher than in the other direction, so the
N’s deterministic assumption may lead to an inadequate
ssessment of the proportion of people in more devel-
ped countries in the future. This, in turn, has important
mplications for future carbon emissions.

Instead, we used a probabilistic method for net mi-
ration rates (Azose & Raftery, 2015; Azose et al., 2016).
he model is a Bayesian hierarchical first-order autore-
ressive model for five-year rates, where each country has
ts own long-term mean and variance and autoregressive
arameter.
This method does not take account of population age

istribution. This is reasonable for projections three gen-
rations ahead, to 2100, because population age distri-
ution typically changes slowly enough that it doesn’t
ramatically affect likely migration numbers over this
eriod. However, there are about ten generations to 2300,
nd these are likely to see significant population aging
hroughout the world. Since international migration is
argely concentrated in young ages, mostly between 15
nd 35, this population aging is likely to lead to substan-
ial reductions in migration over such a long period.

We modified the method to take account of this. We
irst consider negative simulated values of net migra-
ion and treat them as if they were entirely made up
f out-migration. We used a Rogers-Castro-like schedule
or age-specific out-migration, taken from the schedule
sed for China and other countries by the UN for 2020–
025 (Rogers & Castro, 1981; United Nations, 2019b).
sing this schedule and the age breakdown of the pop-
lation in 2020, we converted the simulated net migra-
ion rate to the corresponding Gross Migraproduction Rate
GMR), which is an age-standardized measure of out-
igration and is independent of the population age struc-

ure (Rogers & Castro, 1981). We then reconverted it to an
djusted net migration rate for the future year.
More specifically, let a denote age group, for a =

1, . . . , A, and let Ra denote the assumed age-specific mi-
ration rate from the Rogers-Castro-like schedule. Note
hat here Ra is taken to be constant over time and coun-
ries, for convenience; the results are unlikely to be sen-
itive to this assumption. We let πa,c,t be the proportion
f the population of the sending country c at time t that
as in age group a, so that

∑A
a=1 πa,c,t = 1 for each c and

. Let r be the net migration rate for country c at time T .
c,t

88
Let Kc,t =
∑A

a=1 Raπa,c,t . The age-adjusted net migration
rate is then rc,tKc,t/Kc,2020.

Similarly, we treat positive simulated values of net mi-
gration as if they were entirely made up of in-migration.
In that case, the relevant denominator population for
the migration rate is the population of the rest of the
world, which we will approximate by the population of
the world as a whole. Let wa,t be the projected proportion
of the world’s population in age group a at the begin-
ning of time period t for the simulated trajectory being
constructed, and define Wt =

∑A
a=1 Rawa,t . Then the

age-adjusted net migration rate is rc,tWt/W2020.
In summary, our age-adjusted net migration rate is

r∗c,t =
{

rc,tWt/W2020 if rc,t ≥ 0
rc,tKc,t/Kc,2020 if rc,t < 0. (22)

Qualitatively, this will tend to reduce numbers of mi-
grants, both for individual countries and worldwide, as
the population ages.

Finally, when this is incorporated into the population
projections in the form we have described, migration
will not sum to zero across the world. In practice, the
difference between the sum of net migration by country
and zero is generally small, so this is not a major problem
in practical terms, but it is nevertheless unrealistic. To
address this, we rebalanced migration in each time period
and for each age and sex by reallocating any excess to
countries in proportion to their population, as described
by Azose et al. (2016). Special treatment is required for
the six countries of the Gulf Coordinating Council or GCC
and the primary countries that supply them with migrant
labor, as described by Azose et al. (2016).

4.4. Population density constraints

In a probabilistic projection, some trajectories may
produce unrealistically high or low populations for some
countries. This is essentially unavoidable, and we deal
with it by imposing constraints on the population density
that can be attained.

Intuitively, small countries will have a larger den-
sity constraint than big countries. This is because high-
density small countries tend to consist largely of a dense
metropolitan area and its hinterland. On the other hand,
countries with large geographic areas may have dense
metropolitan areas, but they also have large rural areas,
so they tend to have lower population densities. For ex-
ample, it is unlikely that a large country like Niger would
reach the same population density as much smaller coun-
tries or territories like Hong Kong or Singapore, which are
essentially city-states.

Fig. 8 shows the current relationship between popula-
tion (in thousands) and land area (in km2) on the log–log
scale as black dots. The blue dashed line is the corre-
sponding regression line with a slope of 0.771; below 1
supports our claim that average population density tends
to decline with the area. In addition to a few countries
marked in the plot, we also included Dhaka, which is by
some measures the densest major city in the world, with
a population density of 41,000 inhabitants per square

kilometer (Demographia, 2019). Our constraint is defined



A.E. Raftery and H. Ševčíková International Journal of Forecasting 39 (2023) 73–97
Fig. 8. Log–log plot of population (in thousands) and land area (in km2). Black dots show the current data, while the blue dashed line is the
regression line. The red line depicts our density constraint defined as log(population) < 5.118+ 0.771· log(land area). The black dotted line is a line
with slope 1 that intersects Dhaka.
as the red line in Fig. 8, which has the same slope as
the blue regression line, and the intercept is chosen such
that it intersects the data point corresponding to Dhaka,
namely 5.118. This restriction yields a different maximum
density for each country that depends on its area. For
example, the limit is 5300 people per km2 for India and
37,360 for Singapore.

This density limit is imposed by restricting the maxi-
mum number of in-migrants for the particular country in
each time period. We pose a similar limit on the number
of out-migrants, which is such that the density does not
fall below the current density of Mongolia (1.9 persons
per km2) or the historical lowest observed density of
the country since 1950, whichever is smaller. Note that
Mongolia is currently the country with the lowest popu-
lation density globally (among the 201 countries with a
population of over 100,000 in 2019).

5. Very long-term population projections: Results

The country-specific projections to 2300 are shown in
the Appendices in the Supplementary Material. The fertil-
ity results are shown in Appendix A, the life expectancy
results in Appendix B, the migration results in Appendix
C, and the total population results in Appendix D.

5.1. Total fertility

The fertility results show the total fertility rate in
all countries eventually fluctuating around a country-
specific level that is below the replacement level of 2.1.
For current high-fertility countries, there is considerable

uncertainty about when that is likely to occur. The plots

89
also show the UN’s probabilistic TFR projections to 2100
(United Nations, 2019a); these agree closely with our
projections up to that point, as expected.

For countries that currently have high fertility, uncer-
tainty about future TFR first widens, then shrinks, and
finally stabilizes as we move farther into the future. This
may seem surprising at first sight, since in most situa-
tions, we expect uncertainty to increase steadily as we go
farther into the future. However, for high-fertility coun-
tries, overall uncertainty about future fertility is produced
by the combination of several trends that go in different
directions, producing the pattern seen.

In the short term, uncertainty is low because fertility
changes slowly over time, due to the inherent inertia in
human population dynamics. In the medium term, uncer-
tainty is dominated by uncertainty about the future pace
of the fertility decline, which is considerable. Eventually,
however, our model implies that the fertility transition
will be complete and fertility will stabilize. It is uncertain
precisely when the fertility transition will be complete in
these countries, but there is a point that differs by country
but is no later than 2250 for any country, by which we can
be fairly sure that it will be complete everywhere.

As we approach that point, uncertainty about the pace
of the fertility decline becomes less relevant and con-
tributes less to overall uncertainty, thus reducing it. Once
that point has been reached, uncertainty is dominated by
the expected stochastic fluctuations around the country-
specific long-term mean. The combination of these trends
produces the unusual widening-shrinking-stabilizing pat-
tern that we observe in the prediction intervals.

Percentiles of the distribution of world TFR (weighted
by countries’ populations) for the 2245–2250 and 2295–

2300 periods are shown in Table 1. It can be seen that the
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Fig. 9. Predictive distribution of world TFR (weighted by countries’ populations) from 2100–2300. The line in the middle of the box is the predictive
median, the box shows the 80% prediction interval, and the dashes show the 95% prediction interval.
Table 1
Percentiles of the posterior predictive distribution of

world TFR (weighted by the countries’ populations) for the
2245–2250 and 2295–2300 periods.
Year Percentile

2.5 10 50 90 97.5

2245–2250 1.20 1.41 1.72 2.07 2.23
2295–2300 1.20 1.37 1.72 2.07 2.23

95% intervals are the same as the desired interval elicited
from the RFF expert panel.

The evolution of world TFR in 2100–2300 is shown in
ig. 9. It can be seen that fertility declines steadily until
250, after which it stabilizes, as desired. The width of
he interval increases over time up to the point of likely
tabilization by 2250, also as desired.

.2. Life expectancy

The life expectancy results show life expectancy con-
inuing to improve in expectation in all countries, but
ith many trajectories showing considerable fluctuations,

ncluding temporary declines. By 2300, it is anticipated
hat life expectancy in most countries will have reached
he high 90s.

.3. Migration

The probabilistic projections of net migration counts
eflect several countervailing long-term trends. The model
or net migration rates, defined as net migration divided
y population, says that each country has a long-term
ean and that the net migration rate fluctuates around

t according to a first-order autoregressive process (Azose
Raftery, 2015). This leads to prediction intervals that
90
are narrow for short-term predictions, then widen and
finally stabilize as the forecast horizon increases. This is
a standard pattern for stationary time series models.

The net migration rate is multiplied by a factor reflect-
ing the projected population age structure, as described
in Section 4.3. Since the population is projected to show a
general aging trend in almost every country over the next
280 years, this factor is generally below 1 and declines as
time goes forward, leading to a narrowing of the intervals.
The combination of these two trends yields a pattern of
widening and then shrinking for the uncertainty intervals
for net migration numbers for most countries.

The plots in Appendix C also show the UN’s projec-
tions of migration to 2100 (United Nations, 2019a). For
most countries, these combine expert opinion for the first
few time periods past 2020 with an assumption of con-
stant migration after that. Our predictive medians tend to
shrink towards zero and thus be smaller than the UN’s
projections in absolute value. This reflects two factors.
First, our method accounts for the tendency of net migra-
tion to shrink towards a long-term estimated mean which
is usually less extreme (i.e. closer to zero) than the current
value. Second, our method accounts for population aging,
which is also likely to shrink net migration towards zero.

5.4. Population

Quantiles of the predictive distribution of total world
population to 2300 are shown in Fig. 10 and Table 2.
They show that the world population is likely to level off
in the 22nd century, and to decline slightly in the 23rd
century. Uncertainty for 2300 is considerable, appropri-
ately, reflecting the very long forecast time horizon, with
a median forecast of 7.5 billion, but a likely range (90%
interval) of 2.8 to 20.5 billion.

Fig. 10 also shows the UN’s estimates of past world
population from 1950 to 2020, and the UN probabilistic
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Fig. 10. Predictive distribution of total world population to 2300, in billions. The circles show UN 2019 estimates of past population. The red
curve shows our predictive median to 2300, the darker shaded area shows the 80% predictive interval, and the lighter shaded area shows the 95%
predictive interval. The blue lines and shaded areas show the UN’s probabilistic forecasts of world population to 2100 (United Nations, 2019a). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 2
Predictive distributions of total population for the world and the major continental regions in 2100, 2200 and 2300, in thousands.
The predictive median, 80% intervals, 90% intervals (‘‘likely range’’) and 95% intervals are shown.
Name Year Median low80 high80 low90 high90 low95 high95

World 2020 7,793,665
World 2100 11,087,401 10,038,154 12,163,649 9,757,003 12,548,652 9,549,781 12,818,071
World 2200 10,381,900 7,305,100 14,956,607 6,643,463 16,545,674 6,156,100 17,863,299
World 2300 7,479,886 3,554,617 16,223,973 2,793,983 20,510,688 2,293,425 25,801,229

Africa 2020 1,340,592
Africa 2100 4,290,987 3,686,547 4,972,991 3,542,387 5,211,465 3,435,249 5,401,694
Africa 2200 5,323,541 3,278,622 9,210,068 2,924,092 10,585,450 2,747,030 11,514,647
Africa 2300 3,982,297 1,671,097 10,586,376 1,250,330 13,696,038 995,185 17,667,505

Latin America 2020 653,561
Latin America 2100 686,138 596,425 795,440 571,759 830,258 552,256 862,167
Latin America 2200 432,221 302,055 629,780 276,232 709,607 252,908 780,968
Latin America 2300 256,177 123,485 579,450 102,446 734,926 83,261 936,212

Northern America 2020 368,745
Northern America 2100 432,649 342,876 517,695 319,832 541,262 291,137 570,309
Northern America 2200 389,732 224,336 640,079 183,844 764,334 153,865 888,621
Northern America 2300 300,657 112,286 792,596 80,708 1,066,054 66,708 1,341,687

Europe 2020 747,279
Europe 2100 614,387 554,549 682,457 537,381 705,422 523,280 728,253
Europe 2200 467,211 353,597 646,902 323,876 711,139 306,563 769,195
Europe 2300 323,045 165,330 650,339 136,827 817,130 112,740 1,023,016

Oceania 2020 42,433
Oceania 2100 63,786 48,794 81,787 45,638 88,995 41,729 95,792
Oceania 2200 57,509 32,762 104,733 28,100 122,283 24,636 147,899
Oceania 2300 40,186 16,791 113,117 14,416 160,667 12,905 207,300

Asia 2020 4,641,055
Asia 2100 4,938,621 4,354,567 5,633,480 4,207,749 5,857,253 4,076,522 6,070,905
Asia 2200 3,420,825 2,363,271 4,793,465 2,182,077 5,464,810 1,989,421 5,890,026
Asia 2300 2,142,945 998,585 4,456,487 792,596 5,804,237 627,913 6,972,282
91
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orecasts of world population to 2100. These agree closely
ith our forecasts to 2100. The slight differences are due
o minor differences in methodology, most notably in
erms of migration and modeling mortality in countries
ith generalized HIV/AIDS epidemics.
Fig. 11 shows the results for each major continental re-

ion. They show that the populations of Asia, Europe, and
atin America are likely to peak well before the end of this
entury and then decline substantially. The populations of
frica and Northern America are also likely to peak and
hen decline, but much later, in the 22nd century. In the
ase of Africa, this is due to population momentum (with
high fraction of the population currently in reproductive
ges) and current high fertility. In the case of Northern
merica, it is due to a combination of modest population
omentum, fertility that is closer to replacement level

han in other continents, and immigration. Uncertainty for
ach region in 2300 is high.
Fig. 11 also shows the UN’s probabilistic population

rojections for the major continental regions, from United
ations (2019a). For Africa, Asia, Europe and Latin Amer-
ca and the Caribbean, these agree closely with our projec-
ions to 2100. For Northern America, however, we project
ower population growth to 2100 than the UN does. This
eflects that population growth in this region is driven to
significant extent by immigration to the US and Canada.
he UN projects (deterministically) that net migration to
hese countries will continue at essentially its current
evel until 2100. We project lower migration, however,
ainly due to the projected population aging in the rest
f the world for the remainder of this century. This trans-
ates to lower population growth in Northern America,
hich is projected to continue to draw immigrants from
ll over the world.
Fig. 12 shows the results for each of the UN’s ma-

or groupings of countries by the current level of de-
elopment — more developed, less developed and least
eveloped. These are important in the context of pro-
ecting carbon emissions, since more developed countries
re likely to emit relatively large amounts of carbon,
hile the least developed countries are currently emit-
ing very low levels of carbon. Until 2100 the projections
gree fairly closely with those of the UN, although they
re somewhat lower for the more developed regions,
ue to our lower projections of migration. Our migration
rojections are for continued net migration towards the
ost developed countries and away from most of the

east developed countries. However, this is not enough
o completely cancel out the lower population decline in
he least developed countries due to population momen-
um (i.e. a currently young population), and current high
albeit declining) fertility.

Appendix D shows our population projections for each
ountry, along with those of the UN. The two sets of
rojections are very close for most countries up to 2100.
here are some countries for which there are notice-
ble differences, however, due to the different migration
reatment. In some cases (e.g. Norway, Switzerland), we
roject lower in-migration because of long-term popu-
ation aging, which the UN does not consider. In oth-
rs (e.g. Zimbabwe, Botswana, Eswatini, Syria, Venezuela)
92
there has been substantial recent out-migration, often
due to conflicts, and the UN projects large positive re-
turn migration. Our method instead has a median pro-
jection of continued out-migration from these countries,
although with substantial uncertainty that does allow for
the possibility of large return migration. In each of these
cases, the UN’s deterministic projection of net migration
is contained within our prediction interval.

6. Discussion and conclusion

We have reviewed the UN’s methodology for proba-
bilistic population forecasts to 2100, using Bayesian hi-
erarchical models. We have extended this to produce
probabilistic population projections for all countries of
the world to 2300 for use in assessing the social cost of
carbon. The method combines an extension of the UN’s
current probabilistic population projections from 2100 to
2300 with expert review, elicitation and modification. The
results show a likely stabilization of the world population
in the 22nd century, with a slight decline in the 23rd
century. There is, appropriately, considerable uncertainty
about the population at these distant time horizons.

We are aware of only three other detailed efforts to
project the world population to 2300. One was carried out
by United Nations (2004) and was deterministic, but con-
taining several scenarios. The range of these projections
for 2300 from the different scenarios went from 2.3 to
36.4 billion, compared with our 95% prediction interval of
2.3 to 25.8 billion. Although using very different method-
ologies and carried out over 15 years apart, the two sets
of projections give results that are compatible with one
another, perhaps to a surprising extent. The very high
upper bound for the United Nations (2004) projections is
likely an artefact due to the perfect correlation implied by
the deterministic scenarios and the aggregation of such
results.

Another such exercise was carried out by Vallin and
Caselli (1997), also deterministic with scenarios. They pre-
sented three scenarios corresponding to different long-
term trajectories of world TFR. Two of the scenarios led to
the world population stabilizing at around 9 billion, while
the other resulted in 4.3 billion people in 2300. All three of
these scenarios give world population in 2300 well within
our 80% interval. The range is much narrower than either
ours or that of United Nations (2004).

Basten et al. (2013) also performed a projection ex-
ercise to 2300. This was also deterministic but with a
very wide range of scenarios for long-term world TFR. In
their tables of results, they showed projections of global
population yielding anything from zero to 86 billion in
2300. They emphasized scenarios in which the global level
of fertility converges to the then-current European TFR
of 1.5, or that of Southeast Asia or Central America, of
around 2.5. According to their analysis, the former would
lead to a world population of about 1.1 billion, while the
latter would lead to 86 billion in 2300. As with the United
Nations (2004) projections, these very extreme outcomes
are likely in part due to the perfect correlation between
countries implied by the deterministic scenarios and the
aggregation of such results.



A.E. Raftery and H. Ševčíková International Journal of Forecasting 39 (2023) 73–97

c
t
m
e
b
w
b
t

Fig. 11. Predictive distribution of total population to 2300 for the major continental regions. The circles show UN 2019 estimates of past population.
The red curve shows our predictive median to 2300, the darker shaded area shows the 80% predictive interval, and the lighter shaded area shows
the 95% predictive interval. The blue lines and shaded areas show the UN’s probabilistic population forecasts to 2100 (United Nations, 2019a). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Predictive distribution of total population to 2300 for the UN’s major developmental groupings of countries. The circles show UN 2019
estimates of the past population. The red curve shows our predictive median to 2300, the darker shaded area shows the 80% predictive interval,
and the lighter shaded area shows the 95% predictive interval. The blue lines and shaded areas show the UN’s probabilistic population forecasts to
2100 (United Nations, 2019a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
The UN’s 2019 projections to 2100 use a complicated
ompartmental model for mortality for the 20 or so coun-
ries, they were assessed as needing special analytic treat-
ent because of the presence of generalized HIV/AIDS
pidemics (United Nations, 2019b). It would not have
een feasible for us to extend this model to 2300. Instead,
e applied the same model for mortality to all countries,
ut we did not use the HIV/AIDS countries in estimating
he parameters of the mortality model. As can be seen
93
from Appendix B, this leads to only very small differences
between the UN projections and ours for life expectancy,
even in the countries with the highest HIV prevalences.

A much simpler method for projecting mortality and
hence population in countries with generalized HIV/AIDS
epidemics, that does take explicit account of the demo-
graphic impact of the epidemic, was developed by Godwin
and Raftery (2017) and Sharrow et al. (2018). The UN
Population Division is considering using this method in
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uture revisions of the World Population Prospects, and do-
ng so could also improve the very long-range projections.
t is generally thought, however, that HIV prevalence will
ave declined to low levels by 2100, so this might not
ave much impact on projections of population change
etween 2100 and 2300.
A significant limitation of our work is that we do not

xplicitly model climate and other population feedback.
n principle, doing this would be a good idea, but at this
tage, it does not seem that the science needed to do this
efensibly is yet in place. A great deal of the relevant
limate science to 2014 is contained in the IPCC Fifth
ssessment Report (Intergovernmental Panel on Climate
hange, 2014). While there has been some progress since
hen, we do not believe that there is enough consensus
bout the likely extent of global impacts of climate change
n the components of population change to support a
etailed modeling exercise.
Consider the three main components of population

hange: fertility, mortality and migration. There is no
lear evidence of a major impact of climate change on fer-
ility, the most important component at the world level,
uch less of its direction and extent. In contrast, there

s evidence of an impact on mortality. The most widely
ited assessment is that climate change will cause approx-
mately 250,000 additional deaths per year from malnu-
rition, malaria, diarrhea and heat stress (World Health
rganization, 2014). While this is large from a human-
tarian point of view, its global demographic impact is
elatively small.

Finally, it is known that climate change is likely to
ause migration, but most of it will be either internal
igration or migration from small islands or other nations
t risk of flooding. Thus its impact on national populations
s unlikely to be large for most countries.

However, we would argue that our approach does im-
licitly incorporate some effects of future climate change
n the population. The climate has already warmed by
bout 1 ◦C, with most of the change happening since
950, i.e. during the period from which the data on which
ur model is built come. Thus, our model has been esti-
ated using data from a warming planet. More specifi-
ally, the mortality impact of climate change to date is
ikely already included in the life expectancy data used to
stimate our model. Thus our projected changes in future
ife expectancy are already lower because of the effect of
limate change.
The same is true for international migration. Our

odel for migration anticipates a continuation of exist-
ng trends, which already reflect emigration from the
ountries most affected by climate change, to the extent
hat it is occurring. For example, one of the countries
ost threatened by climate change is the small Pacific

sland nation of Kiribati. Our method projects continuing
ustained out-migration from Kiribati, indeed to a greater
xtent than the UN projections. As a result, our median
rojection calls for a 77% decline in the population of Kiri-
ati from 2100 to 2300, mainly because of out-migration
aused by climate change.
As another example, among countries with large popu-

ations, Bangladesh is perhaps the most at risk of climate-
riven international migration due to increasing floods.
94
Our method projects likely sustained out-migration from
Bangladesh over the coming centuries, likely in large
part driven by climate change. Our method translates
this to a projected reduction of 84% in the population of
Bangladesh from its peak in 2050 to 2300, again due in
large part to climate change.

Our method also implicitly incorporates climate and
other feedbacks through the density-dependent
constraints, as well as the continuing international mi-
gration, particularly from developing countries to rich
countries. The global density-dependent constraints en-
sure that if countries approach particular thresholds on
population density, their population growth is likely to
slow. In practice, the mechanisms for this are likely to
be climate and other feedbacks. Also, the fact that we
model out-migration as proportional to the age-adjusted
population of a country means that the method does
capture the likelihood of population growth leading to
increased migration out of developing countries, at least
approximately.

Finally, these projections are for use in assessing the
social cost of carbon, for which a 3% discounting rate has
been proposed (National Research Council, 2017). Under
such a discounting rate, impacts over from 2100 to 2300
would account for only about 10% of the impacts over the
entire period from 2020 to 2300. On the other hand, the
effect of climate feedback on population is likely to be
most keenly felt in the period after 2100. Thus it seems
unlikely that the assessment of the social cost of carbon
would be very sensitive to reasonable changes in the
precise way climate feedback effects are incorporated into
the analysis.

Thus overall, we would argue that our approach im-
plicitly captures likely feedbacks from climate to popula-
tion, at least approximately. We feel that the science does
not yet lend itself to more detailed modeling that would
command consensus. However, continuing research to
include climate feedbacks more explicitly in long-term
population projections should be pursued.

An even more fundamental question is whether pro-
jecting population to 2300 makes sense at all, given the
possibility of major disruptions due to technological, envi-
ronmental and other changes. The underlying assumption
here is that the basic demographic patterns that have pre-
vailed over the past century and a half, since the spread
of the Industrial Revolution beyond Britain, will continue.
Very broadly, these are a continuation of the fertility
transition for countries with above-replacement fertility,
continued fluctuations of fertility levels not too far from
current or replacement levels in countries once their
fertility transition is complete, and continued steady im-
provement in life expectancy of the kind that has
prevailed over the past 170 years.

One argument for making long-term population fore-
casts is that population is a system with a great deal
of inertia that changes more slowly than most other so-
cial systems. The natural time unit in demography is the
generation (roughly 27 years), and projecting to 2100
involves forecasting three generations into the future; as-
suming reasonable stability over three time units does not
seem unreasonable. However, the year 2300 is about ten



A.E. Raftery and H. Ševčíková International Journal of Forecasting 39 (2023) 73–97

g
o

s
(
c
v
r
H
i
t
w
h

t
t
h
m
d
1
a

l
p
i
g
a
i
t
c
d
r

u
b
c
B
p
i
a
T
V
l
c
e
i
t
o
a

D

p
c
t

A

f

enerations into the future, which makes the assumption
f historic trends continuing more questionable.
One can think of various ways in which such an as-

umption might not be appropriate. For fertility, Warren
2015) has argued that a small subpopulation might be-
ome dominant over time if its members had consistently
ery high fertility, eventually leading to much higher than
eplacement fertility for the world population as a whole.
is simulations showed, however, that it would require
n the region of seven centuries for something like this
o have a major global demographic impact, and its effect
ould likely still be modest in 2300, even if it started to
appen immediately.
For mortality, our method is based on the assumption

hat life expectancy will continue to increase incremen-
ally in all countries. de Grey and Rae (2007) have argued,
owever, that it will soon be possible for people to live
uch longer than they do now; for example, Aubrey
e Grey has conjectured that the first person to live to
000 years has already been born. We have not taken into
ccount explicitly of such possibilities.
However, our results allow for the possibility of high

ife expectancies in some countries by 2300, with the up-
er bounds of our predictive intervals exceeding 120 years
n some cases. Dong, Milholland, and Vijg (2016) have ar-
ued that there is a natural limit to the life expectancy of
round 115 years. There does not seem to be a consensus
n favor of this view in the demographic community. If
here were, however, it could warrant a modest modifi-
ation of our mortality model to take it into account. We
o not expect that such a modification would change our
esults dramatically.

A different set of statistically-based probabilistic pop-
lation projections for all countries to 2100 has recently
een published by Vollset, et al. (2020). These have been
riticized by Gietel-Basten and Sobotka (2020) and Gietel-
asten et al. (2020) (the latter a letter signed by over 100
opulation scientists) because they suffer from numerous
ssues with the underlying data, models and scenarios
s well as over-simplistic interpretations of their results.
he most significant differences between the results of
ollset et al. and those of the UN (United Nations, 2019a)
ie in their different forecasts of fertility in high-fertility
ountries. Alkema (2020) has pointed out that the Vollset
t al. results are based on unvalidated assumptions about
ncreasing met need for contraception and may overes-
imate decreases in fertility in countries with low levels
f modern contraceptive use, and also that the way they
ssessed their method’s performance is questionable.

eclaration of competing interest

The authors declare that they have no known com-
eting financial interests or personal relationships that
ould have appeared to influence the work reported in
his paper.

cknowledgments

This work was supported by NIH grant R01 HD070936
rom the Eunice Kennedy Shriver National Institute of
95
Child Health and Human Development. We thank Rob
Hyndman for the initial suggestion to develop this pa-
per when he was IJF Editor-in-Chief, and to the editor,
associate editor and two anonymous reviewers for con-
structive comments. We are grateful to Kevin Rennert
of Resources For the Future (RFF) for suggesting the de-
velopment of a very long-term probabilistic population
projections and for many helpful discussions, and to Cora
Kingdon for her work on the RFF project. We are also
extremely grateful to the nine discussants who made up
the RFF expert panel that reviewed and discussed the
first version of this work: Juha Alho, Leontine Alkema,
Jakub Bijak, Patrick Gerland, Nico Keilman, Ronald Lee,
Jim Oeppen, Warren Sanderson, and Tomáš Sobotka. Their
written discussions and verbal comments were of ex-
ceptionally high quality, and led us to make many sub-
stantial improvements to our work; notably the inclusion
of additional uncertainty in world TFR, the probabilistic
treatment of migration, the area-dependent bounds on
population density, and the discussion of climate and
other feedbacks.

Appendix A. Supplementary data

Supplementary material related to this article can be
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