#### Lecture 10: Stable age structures

#### **Ernesto F. L. Amaral**

#### April 14, 2025 Demographic Methods (SOCI 633/320)

www.ernestoamaral.com



#### Outline

- Age pyramids
- Stationary equivalent populations
- Unchanging rates
- Stable age pyramids
- Lotka's r
- Population momentum



## Age pyramids

- There is theory to deal with age structure
  - It accounts for the relative numbers of young and old men and women in a population

- Basic idea is to obtain formulas for how a population will be theoretically distributed by age
  - If population has been closed to migration
  - If its birth and death rates have been unchanging for a long time

#### Actual ≠ Theoretical

 The actual age distribution of the population naturally differs from the theoretical age distribution

- Deviations are explained by
  - Events of migration
  - Changes in rates in the prior history of the population



#### General and special features

• The age distribution of each population has

- General features
  - Which it shares with populations with the same vital rates

- Special features
  - Which are derived from its own particular history



### Graphical diagrams

- Age pyramid, age distribution, age structure
  - They represent the distribution of the population by age and sex
  - They are made up of a pair of bar graphs, one for men and one for women, turned on their sides and joined
- The vertical axis corresponds to age
  - The young are toward the bottom, the elderly toward the top
  - The open-ended age group at the very top is sometimes drawn with a triangle instead of bars
- For each age group
  - The bar coming off the axis to the right represents the number of women in that age group
  - The bar to the left the number of men



## Idealized age pyramids

- Examples of idealized stable pyramids that occur in closed populations with unchanging vital rates
- Tall and slender
  - It is a case for a long-lived population with near zero growth
- Quite pyramidal in shape
  - It is a case for a population with heavy mortality and rapid growth



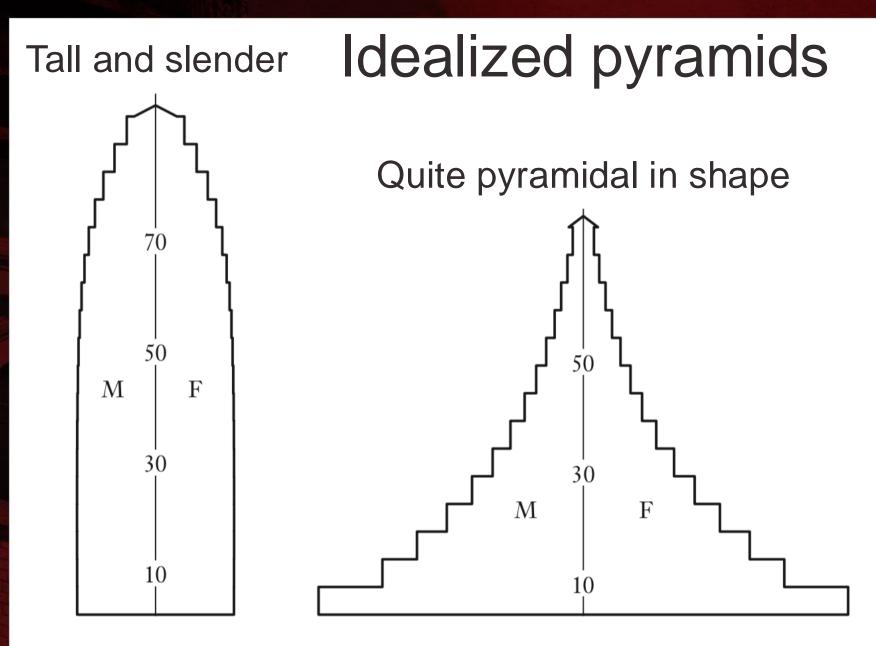


Figure 10.1 Examples of stable age pyramids

#### Stable population

- Stable population is any population produced by age-specific rates of fertility and mortality constant over a long period of time
  - Its age pyramid is determined uniquely by its lifetable and its long-term growth rate
  - Proportions in each age group in a stable population do not change over time
  - Numbers in each age group may change over time
    - Population may be growing or declining in size
    - It depends on what the growth rate happens to be



### Observed age pyramids

- Examples of observed age pyramids
- France in 1960
  - It shares overall shape with the low-growth stable case
  - But notches among 20 and 40 years of age due to low births during World Wars I and II
- Mauritius in 1963
  - It shares overall shape with high-growth stable case
  - But indentations at working ages hint at
    - Changes around 1945 from increasing growth probably due to gains against infant mortality
    - Out-migration



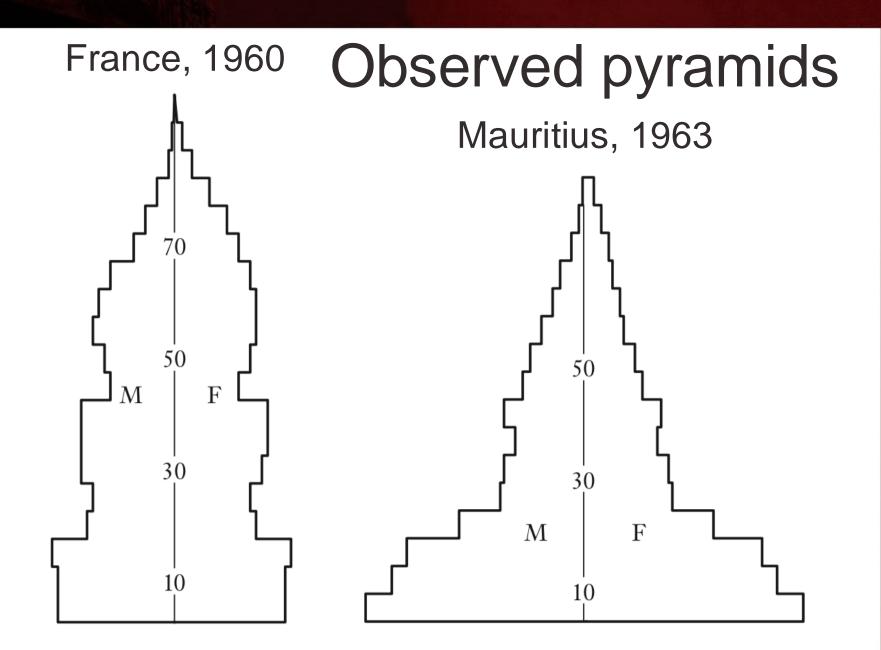


Figure 10.2 Examples of observed age pyramids

#### Idealized ≠ Observed

Stable theory captures general features well

- Observable differences from stable population shapes are due to each nation's own history
  - Changing mortality and fertility rates
  - Movements across borders



## Stable population conditions

- It considers a closed population
  - A population in which migration does not occur
- If a population experiences constant age-specific fertility and mortality rates for a long time
  - It develops a constant age distribution and grows at a constant rate, irrespective of its initial age distribution
  - Demographers sometimes indicate that stable populations forget their past
- Age distribution of a stable population depends on
  - The underlying age-specific mortality rates
  - The rate of growth



## Stable & stationary populations

- Stable population
  - Rates stay the same, but the population size may change
- Stationary population
  - Rates and population size remain the same
  - The growth rate is zero
  - It is a special case of a stable population which satisfies the extra condition of having zero population growth (ZPG)



## Stable population theory

- Stable population theory is the mathematical analysis of stable age pyramids
- It is a theory that goes back to the work of Leonhard Euler in 1760
- It was extensively developed by
  - Alfred Lotka (1880–1949) used life tables to develop his stable population theory in the early 1900s
  - Nathan Keyfitz and Ansley Coale in the last halfcentury





## Stationary equivalent populations

 Unchanging age-specific rates along with exponentially growing births imply the equation

 $k(x,t) = B(t)(\ell_x/\ell_0)e^{-Rx}$ 

k(x,t) is the density of individuals age x at time t,
which is the height of the Lexis surface



# Unchanging $l_x$ and R

• When cohort survivorship  $l_x$  is unchanging, those individuals age x at time t are the survivors

 $B(t-x)\ell_x/\ell_0$ 

– Out of the B(t-x) babies born at time t-x

• When it is also true that births are growing exponentially at rate *R*, then

 $B(t-x) = B(0) \exp(R(t-x)) = B(t) \exp(-Rx)$ 



## Age groups of width n

 The formula for a stable population with age groups of width *n* followed across *n*-year-long steps of time turns out to be

$${}_{n}K_{x}(t) = B(t)({}_{n}L_{x}/\ell_{0}) \exp(-Rx)$$

 Similar to the expression in continuous time (below) with big "L" in place of little "l"

 $k(x,t) = B(t)(\ell_x/\ell_0) \exp(-Rx)$ 



#### Growth rate R as r

• The growth rate *"R*" turns out to be a special growth rate which will be written as *"r*"

- This can be understood with the special case of a stationary population
  - *R*=0
  - Births B(t) equal to an unchanging count B



#### Leslie matrix subdiagonal

With R=0, the same Age reasoning leading from Figure 5.2 to the formula for the subdiagonal elements of a Leslie matrix tells us that

$$_{n}K_{x} = B_{n}L_{x}/\ell_{0}$$

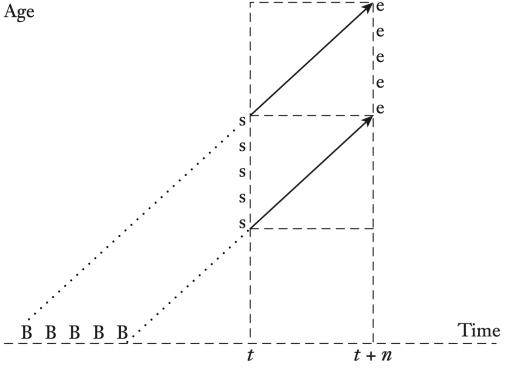


Figure 5.2 Contributions to the Leslie matrix subdiagonal



## Total stationary population size

- Total population size for a stationary population is obtained by adding the sizes of the age groups
- Adding up the *L* values and dividing by the radix  $(\ell_0)$  gives us the life expectancy at birth  $(e_0)$

$$e_0 = \Sigma({}_nL_x) / \ell_0$$

The total population size is

$$B e_0 = B \Sigma({}_n L_x) / \ell_0$$



## CBR and age group proportion

- We can divide the size of each age group by the total size to find the proportion in the age group
  - We avoid having too many letters by writing  $_{\infty}K_0$  for total size (whole population from ages zero to infinity)
- The Crude Birth Rate is

$$b=B/(_{\infty}K_0)$$

• The proportion aged x to x+n in a stationary population is  $K_{x} = L_{y}$ 

$$\frac{{}_{n}K_{x}}{{}_{\infty}K_{0}} = b \frac{{}_{n}L_{x}}{\ell_{0}}$$



#### Disagreement in units

• Going back to the formula for counts  $({}_{n}K_{x})$ 

$$_{n}K_{x} = B_{n}L_{x}/\ell_{0}$$

- Units on the left-hand side are people
- Units on the right-hand side are people (*B*) times person-years ( $_{n}L_{x}$ ) divided by people ( $\ell_{0}$ ), which ends with person-years
- So, the units disagree

People = Person-years

This is a clue...



## $_{n}L_{x}$ as stationary population

 A correspondence is being established between people and person-years

$$_{n}K_{x} = B_{n}L_{x}/\ell_{0}$$

- *nL<sub>x</sub>* sometimes has the label "stationary population" instead of "person-years lived"
- We can choose the radix  $(\ell_0)$  equal to B

$${}_{n}K_{x} = B {}_{n}L_{x}/\ell_{0} = {}_{n}L_{x}$$

This is related to the synthetic cohort concept



## Going in the opposite direction

- Previously, we started with a period population and ended up with a synthetic cohort
- We can try going in the opposite direction
  - Starting with a synthetic cohort and trying to end up with a population in a period
  - But we do not get the original period population
- We end up with a stationary population
  - It has the same lifetable as the period population
  - But it usually has very different age-group counts



## Stationary equivalent population

- The population derived from a synthetic cohort is called a "stationary equivalent population"
- It is a population equivalent to a cohort



#### Construction

- Constructing the stationary equivalent population
- Make each year in the life of each cohort member match up with a unique population member
- One cohort person-year is associated with one population person, forcing units to agree
- Interpret the count of births B in the stationary formula as a density of births per year



#### Population correspondence

• The cohort size is much smaller than the population size

On average, each cohort member lives for e<sub>0</sub> years

• So a cohort of size  $\ell_0$  corresponds to a stationary equivalent population of size



## Unchanging rates

- Stable populations are more general than stationary populations
  - Stable populations may have any growth rate
  - Stationary populations have zero growth
- Study the effects of constant age-specific fertility and mortality rates
  - But births do not necessarily balance deaths
- Consequences can be seen by projecting a population over many steps using Leslie matrices

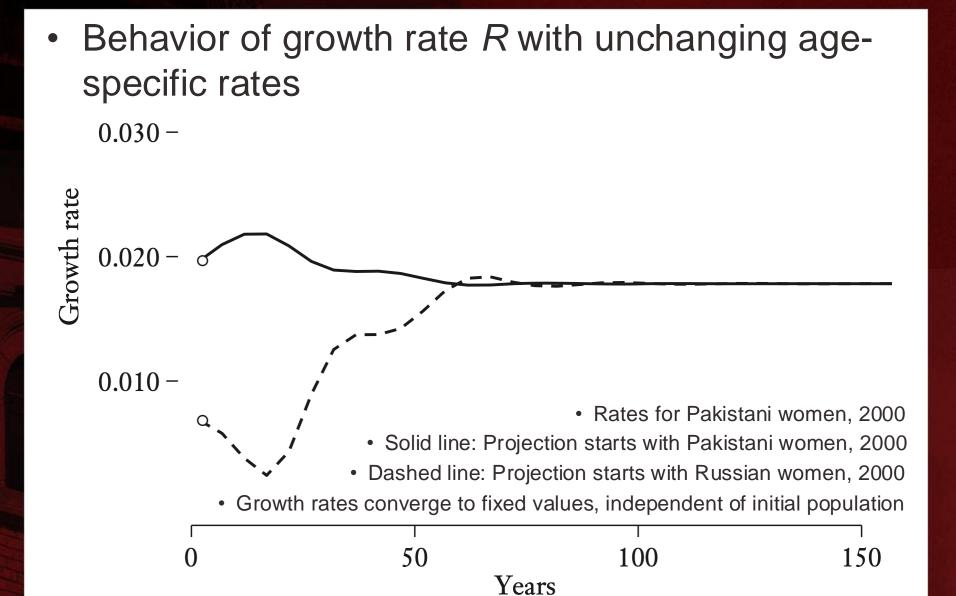


Figure 10.3 Projected growth rates over time

## Long-term growth rate "r"

- Populations projected forward with the same constant age-specific rates may differ in their short-term growth rates
  - They share the same constant long-term growth rate
  - This rate has its own symbol, the letter "r"
- Capital *R* stands for any growth rate
- Little r stands for the special long-term growth rate produced by a long stretch of unchanging demographic rates



#### Intrinsic rate of natural increase

- Little *r* is often called "Lotka's r" after Alfred Lotka
- Its official name is the "intrinsic rate of natural increase"
  - "Intrinsic" because it is built into the fertility and mortality schedules, without regard to population numbers
  - "<u>Natural increase</u>" because it is defined for closed populations without regard to migration



#### Lotka's r definition

 Lotka's intrinsic rate of natural increase (r) is the long-term growth rate of any closed population subject to unchanging age-specific rates of fertility and mortality



 Share of children under age 15 in the population for the same projections as Figure 10.3

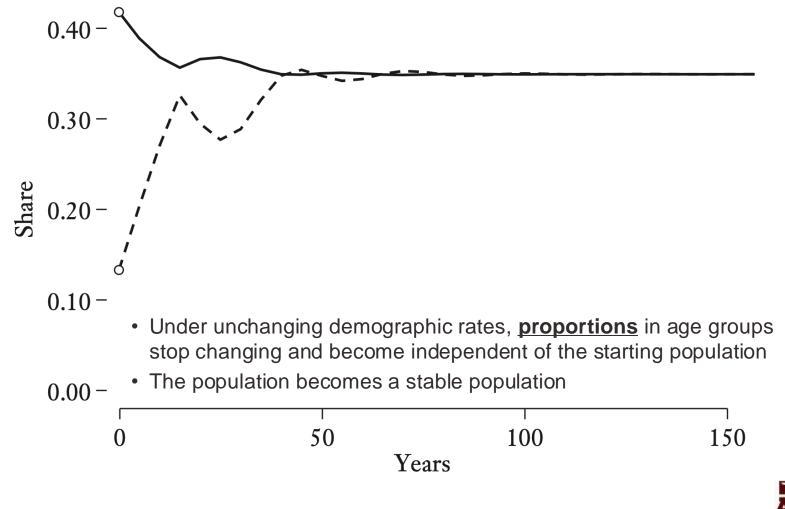


Figure 10.4 An age group share over time

#### **Proportions not sizes**

- A stable population is a population in which the proportions in age groups remain exactly constant over time
- Proportions in age groups are constant over time in a stable population, not the sizes of the groups
- The sizes of age groups at any time in the future do continue to depend on the starting population
- They depend both on initial size and on initial age distribution

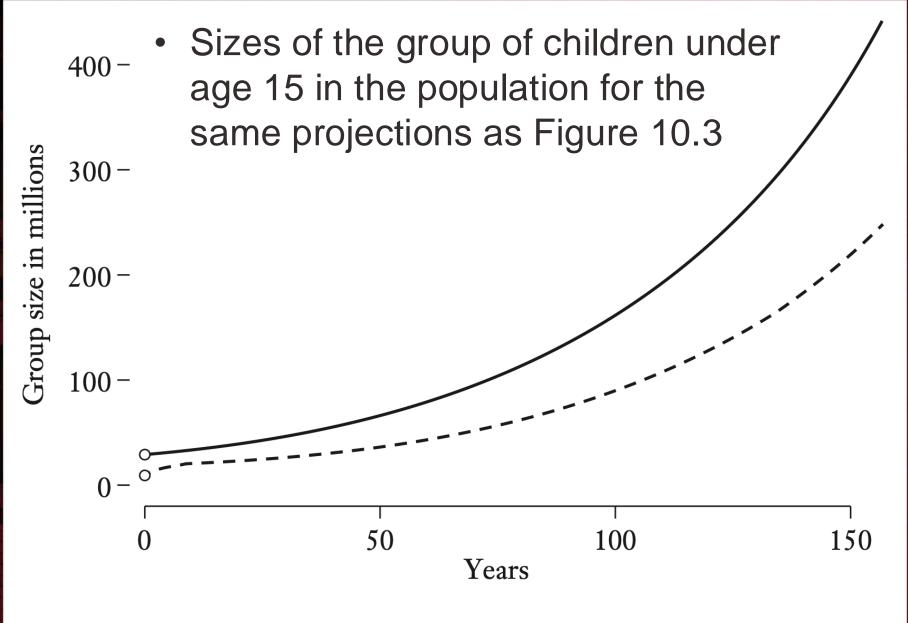


Figure 10.5 Age group size over time

#### Exponential growth

- In a stable population, the size of every age group obeys the formula for exponential growth
- The growth rate is the slope of the logarithm of population size over time
  - When it settles down to *r*, total population is growing exponentially like *e<sup>rt</sup>*
  - When the proportions in age groups have also settled down to fixed values, each age group is also growing exponentially like e<sup>rt</sup>



#### 4 main features

- 1. Growth rates become fixed over time
- 2. Growth rates become independent of starting populations
- 3. Age pyramid proportions become fixed over time
- 4. Age pyramid proportions become independent of starting populations



#### 5 assumptions

- 1. Age-specific rates of giving birth and dying are unchanging over time
- 2. The population is closed to migration
- 3. The female population can be projected independent of the males
- 4. Randomness can be ignored, letting population estimates represent mean or expected values
- 5. Children are estimated in continuous fractions
  - Projected numbers of children from any mother are typically fractions rather than whole numbers





# Stable age pyramids

- A stable population grows exactly exponentially and its growth rate is Lotka's intrinsic rate of natural increase (r)
- These are the generalizations of the stationary population formulas

Stable Counts: 
$$_{n}K_{x} = B \frac{nL_{x}}{\ell_{0}} e^{-rx}$$
  
Stable Proportions:  $\frac{nK_{x}}{\kappa_{0}} = b \frac{nL_{x}}{\ell_{0}} e^{-rx}$ 



#### **Exponential factor**

- Exponential growth as a function of time has a plus sign: e<sup>+rt</sup>
- The exponential factor in the stationary population has a minus sign: e<sup>-rx</sup>
- In a growing population (r > 0), the age pyramid has to shirking as we go up in age, because birth cohorts shrink as we go back in time
- In declining populations (r < 0), older people come from large cohorts from the past



#### Possibilities of *r*

- The first step to study an age pyramid is to assign one of the three classes of population growth
- *r* > 0
  - With positive growth, the shape is broad at the bottom
  - There are lots of young people and fewer old people
- r = 0
  - With zero growth,  ${}_{n}L_{x}$  values determine the slope
- *r* < 0
  - With negative growth, the base is narrow and the pyramid bulges out at the top



#### Age group sizes

- Total size of a stationary population: Be<sub>0</sub>
- No simple counterpart for stable populations
  Have to add up all the age group sizes
- The constant *B* is used for all stable populations

$${}_{n}K_{x} = B {}_{n}L_{x}/\ell_{0} e^{-rx}$$

• For the youngest age group (*x*=0)

$$e^{-rx} = e^{-r0} = 1$$

• For very small *n* (e.g., day, hour)

$$_{n}L_{0}/\ell_{0} \cong n$$
  
 $_{n}K_{0} \cong Bn$ 



# Example with dependency ratios

- We can calculate dependency ratios with
  - Observed data
  - Stable population with intrinsic growth rate (r) and lifetable ( $_nL_x$ )
- Observed ratios are influenced by migration, prior history, and other special features
- The systematic effect of growth is easier to see when we calculate ratios from the stable population formula



#### Data from India, 2000

- Numerator: Number of children below age 15 (0-4, 5-9, 10-14)
- Intrinsic growth rate (r = 0.006); radix ( $\ell_0 = 1$ )

Table 10.1Stable population data for India, youth, 2000

| x  | Observed<br>Count (millions) | Lifetable ${}_{5}L_{x}$ | Factor $e^{-rx}$ | Product ${}_{5}L_{x}/\ell_{0} e^{-rx}$ |
|----|------------------------------|-------------------------|------------------|----------------------------------------|
| 0  | 120.878                      | 4.649                   | 1.000            | 4.649                                  |
| 5  | 116.296                      | 4.549                   | 0.970            | 4.414                                  |
| 10 | 109.984                      | 4.497                   | 0.942            | 4.235                                  |
|    | 347.158                      |                         |                  | 13.298                                 |

#### Data from India, 2000

- Denominator: Working-age population (15–64)
- Intrinsic growth rate (r = 0.006); radix ( $\ell_0 = 1$ )

| ifetable ${}_5L_x$ |
|--------------------|
| 3.386              |
| 2.948              |
| 2.381              |
| 1.706              |
| 1.023              |
| 0.477              |
| 0.158              |
| 0.034              |
| 0.005              |
|                    |

Table 10.2Stable population data for India, adults, 2000

#### Child dependency ratio

- For observed population: 347.158 / 619.854 = 0.560
- For stable population: 13.298 / 33.042 = 0.402

| x C   | count (millions) | Lifetable: 5Lx | Factor: exp(-rx) | Product |
|-------|------------------|----------------|------------------|---------|
| 15    | 100.852          | 4.466          | 0.914            | 4.082   |
| 20    | 88.504           | 4.426          | 0.887            | 3.926   |
| 25    | 83.604           | 4.371          | 0.861            | 3.762   |
| 30    | 75.671           | 4.301          | 0.835            | 3.592   |
| 35    | 66.900           | 4.228          | 0.811            | 3.427   |
| 40    | 58.114           | 4.145          | 0.787            | 3.261   |
| 45    | 48.176           | 4.042          | 0.763            | 3.086   |
| 50    | 39.033           | 3.900          | 0.741            | 2.889   |
| 55    | 32.257           | 3.694          | 0.719            | 2.656   |
| 60    | 26.743           | 3.386          | 0.698            | 2.362   |
| Total | 619.854          | 40.959         |                  | 33.042  |
| r = 0 | .006             |                |                  |         |

#### 2000 observed & stable population

| Data from India         | 2000 observed population |                   |                | Stable population<br>2000 intrinsic rate of natural increase (r)<br>0.006 |         |                   |  |
|-------------------------|--------------------------|-------------------|----------------|---------------------------------------------------------------------------|---------|-------------------|--|
| x                       | Count (millions)         | Population counts | Lifetable: 5Lx | Factor: exp(-rx)                                                          | Product | Population counts |  |
| 0                       | 120.878                  |                   | 4.649          | 1.000                                                                     | 4.649   |                   |  |
| 5                       | 116.296                  |                   | 4.549          | 0.970                                                                     | 4.415   |                   |  |
| 10                      | 109.984                  | 347.158           | 4.497          | 0.942                                                                     | 4.235   | 13.299            |  |
| 15                      | 100.852                  | 2                 | 4.466          | 0.914                                                                     | 4.082   |                   |  |
| 20                      | 88.504                   |                   | 4.426          | 0.887                                                                     | 3.926   |                   |  |
| 25                      | 83.604                   |                   | 4.371          | 0.861                                                                     | 3.762   |                   |  |
| 30                      | 75.671                   |                   | 4.301          | 0.835                                                                     | 3.592   |                   |  |
| 35                      | 66.900                   |                   | 4.228          | 0.811                                                                     | 3.427   |                   |  |
| 40                      | 58.114                   |                   | 4.145          | 0.787                                                                     | 3.261   |                   |  |
| 45                      | 48.176                   |                   | 4.042          | 0.763                                                                     | 3.086   |                   |  |
| 50                      | 39.033                   |                   | 3.900          | 0.741                                                                     | 2.889   |                   |  |
| 55                      | 32.257                   |                   | 3.694          | 0.719                                                                     | 2.656   |                   |  |
| 60                      | 26.743                   | 619.854           | 3.386          | 0.698                                                                     | 2.362   | 33.04             |  |
| 65                      | 20.861                   |                   | 2.948          | 0.677                                                                     | 1.996   |                   |  |
| 70                      | 14.426                   |                   | 2.381          | 0.657                                                                     | 1.564   |                   |  |
| 75                      | 8.617                    |                   | 1.706          | 0.638                                                                     | 1.088   |                   |  |
| 80                      | 4.250                    |                   | 1.023          | 0.619                                                                     | 0.633   |                   |  |
| 85                      | 1.468                    |                   | 0.477          | 0.600                                                                     | 0.286   |                   |  |
| 90                      | 0.340                    |                   | 0.158          | 0.583                                                                     | 0.092   |                   |  |
| 95                      | 0.047                    |                   | 0.034          | 0.566                                                                     | 0.019   |                   |  |
| 100                     | 0.005                    | 50.014            | 0.005          | 0.549                                                                     | 0.003   | 5.68              |  |
| Chid dependency ratio   |                          | 0.560             |                |                                                                           |         | 0.40              |  |
| ld-age dependency ratio |                          | 0.081             |                |                                                                           |         | 0.17              |  |
| Total dependency ratio  |                          | 0.641             |                |                                                                           |         | 0.57              |  |



#### 2013 observed & ZPG

- Dependency ratios for stable populations are revealing because we can compare what we would see with different growth rates
- If India had an intrinsic growth rate (r) equal to its R of 0.015 in 2013, child dependency ratio would be close to observed ratio: 12.740/24.263=0.525
- If India reached sustained zero population growth (*r*=0), child dependency ratio would be 13.695/40.959=0.334

#### 2013 observed & ZPG

| Data from India          | 2000 observed  | 2000 observed 2013 growth rate (R)<br>population 0.015 |         |                   | Zero population growth<br>0.000 |         |                   |
|--------------------------|----------------|--------------------------------------------------------|---------|-------------------|---------------------------------|---------|-------------------|
|                          | population     |                                                        |         |                   |                                 |         |                   |
| x                        | Lifetable: 5Lx | Factor: exp(-rx)                                       | Product | Population counts | Factor: exp(-rx)                | Product | Population counts |
| 0                        | 4.649          | 1.000                                                  | 4.649   |                   | 1.000                           | 4.649   |                   |
| 5                        | 4.549          | 0.928                                                  | 4.220   |                   | 1.000                           | 4.549   |                   |
| 10                       | 4.497          | 0.861                                                  | 3.871   | 12.740            | 1.000                           | 4.497   | 13.695            |
| 15                       | 4.466          | 0.799                                                  | 3.566   |                   | 1.000                           | 4.466   |                   |
| 20                       | 4.426          | 0.741                                                  | 3.279   |                   | 1.000                           | 4.426   |                   |
| 25                       | 4.371          | 0.687                                                  | 3.004   |                   | 1.000                           | 4.371   |                   |
| 30                       | 4.301          | 0.638                                                  | 2.742   |                   | 1.000                           | 4.301   |                   |
| 35                       | 4.228          | 0.592                                                  | 2.501   |                   | 1.000                           | 4.228   |                   |
| 40                       | 4.145          | 0.549                                                  | 2.275   |                   | 1.000                           | 4.145   |                   |
| 45                       | 4.042          | 0.509                                                  | 2.058   |                   | 1.000                           | 4.042   |                   |
| 50                       | 3.900          | 0.472                                                  | 1.842   |                   | 1.000                           | 3.900   |                   |
| 55                       | 3.694          | 0.438                                                  | 1.619   |                   | 1.000                           | 3.694   |                   |
| 60                       | 3.386          | 0.407                                                  | 1.377   | 24.263            | 1.000                           | 3.386   | 40.959            |
| 65                       | 2.948          | 0.377                                                  | 1.112   |                   | 1.000                           | 2.948   |                   |
| 70                       | 2.381          | 0.350                                                  | 0.833   |                   | 1.000                           | 2.381   |                   |
| 75                       | 1.706          | 0.325                                                  | 0.554   |                   | 1.000                           | 1.706   |                   |
| 80                       | 1.023          | 0.301                                                  | 0.308   |                   | 1.000                           | 1.023   |                   |
| 85                       | 0.477          | 0.279                                                  | 0.133   |                   | 1.000                           | 0.477   |                   |
| 90                       | 0.158          | 0.259                                                  | 0.041   |                   | 1.000                           | 0.158   |                   |
| 95                       | 0.034          | 0.241                                                  | 0.008   |                   | 1.000                           | 0.034   |                   |
| 100                      | 0.005          | 0.223                                                  | 0.001   | 2.991             | 1.000                           | 0.005   | 8.732             |
| Chid dependency ratio    |                |                                                        |         | 0.525             |                                 |         | 0.334             |
| Old-age dependency ratio |                |                                                        |         | 0.123             |                                 |         | 0.213             |
| Total dependency ratio   |                |                                                        |         | 0.648             |                                 |         | 0.548             |

#### **Comparative statics**

- These calculations with stable age pyramids can be referred as "comparative statics"
  - "Statics": Study of things that stay fixed
  - "Dynamics": Study of things in the process of movement or change
- In stable population calculations
  - We are comparing what we would see in a country whose growth rate stayed fixed at one value
  - To what we would see in a country whose growth rate stayed fixed at some other value

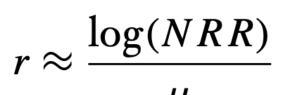


#### Lotka's r

- Lotka's r is the growth rate of the stable population (intrinsic rate of natural increase)
- To estimate it, start with the growth rate formula

 $R = (1/T) \log(K(T)/K(0))$ 

- The net reproduction ratio (*NRR*) is the factor by which the population grows in one generation (K(T)/K(0))
- Cohort mean age of childbearing ( $\mu$ ) is the length of time it takes for the daughter generation to come along
- Thus, an approximation is





#### Example

- Lotka's *r*, *NRR* and  $\mu$  depend on lifetable ( $_nL_x$ ,), fertility rates ( $_nF_x$ ) and the fraction female at birth
- At the peak of the Baby Boom around 1960, the NRR for the United States was about 1.7
- The mean age  $\mu$  was around 27

 $r \cong \log(NRR) / \mu$  $r \cong \log(1.7) / 27$ 

#### $r \cong 0.019653$

• For 2012,  $r \cong \log(0.95) / 29 \cong -0.001769$ 



#### Interpretation

 Does the negative value for r mean that the population of the United States is declining?

– No

- Lotka's r is the long-term growth rate that would occur if the rates for 2012 remained in effect for a very long time
- In the U.S., the value of r has been negative while the period growth rate has been strongly positive
- The U.S. does not have a stable population



#### Lotka's r and NRR

 Relationship between Lotka's r and the net reproduction ratio (NRR)

# $r \begin{cases} > 0 & \text{if and only if } NRR > 1 \\ = 0 & \text{if and only if } NRR = 1 \\ < 0 & \text{if and only if } NRR < 1 \end{cases}$



# Little r goes by several names

- Lotka's parameter
  - Although it goes back to Euler, little *r* became familiar through the work of Alfred Lotka
- Intrinsic rate of natural increase
- Malthusian parameter



#### Intrinsic rate of natural increase

- It is "intrinsic" because it is built into the rates of age specific fertility and mortality without reference to population numbers
- It refers only to "natural" increase from an excess of births over deaths, taking no account of migration



#### Malthusian parameter

- This name can be confusing
- Malthus emphasized limits to population growth, whereas r is a rate assuming no Malthusian limits
- The name comes from passages in which Malthus also discussed exponential growth without limits



#### 3 roles for little r

- *r* is the exact growth rate of the stable population
- r is the long-term growth rate when any initial population is projected forward in time with permanently unchanging rates
- r is the parameter that appears in the e<sup>-rx</sup> factor in the formula for the stable age pyramid





#### Population momentum

- Stable population theory gives a complete account of the age structure and growth implied by a long period of unchanging vital rates
  - Cases of great interest are one-time shifts from one set of previously unchanging rates to a new set of unchanging rates
- Population momentum
  - The tendency for populations which have been growing to keep growing for many years, even when births rates and intrinsic growth rates drop



### Keyfitz scenario

- The sudden shift from a growing stable population to a stationary one was studied by Nathan Keyfitz (Keyfitz scenario)
  - At time *t*=0, a previously stable population with some nonzero value of Lotka's *r* experiences a sudden change in fertility with no change in lifetable
  - Fertility rates for all age groups rapidly change by the same factor and make the new NRR equal to 1
  - The new rates persist for a long time, ultimately creating a stationary age distribution
  - The factor by which all the age-specific fertility rates are multiplied in order to achieve a new NRR of 1 is just 1 over the old NRR

new NRR = 1 / old NRR

## Time before and after drop

- We write  $t=-\epsilon$  for a time just before the intrinsic growth rates drop and  $t=+\epsilon$  for a time just afterward
  - The Greek letter epsilon ( $\epsilon$ ) stands for some tiny positive number
- Nearly the same women are at risk of childbearing just after the drop as before
  - But their post-drop rates of childbearing are only 1/NRR as high, so births  $B(+\epsilon)=B(-\epsilon)/NRR$
  - Logarithmic scale:  $\log(B(+\epsilon)) = \log(B(-\epsilon)) \log(NRR)$

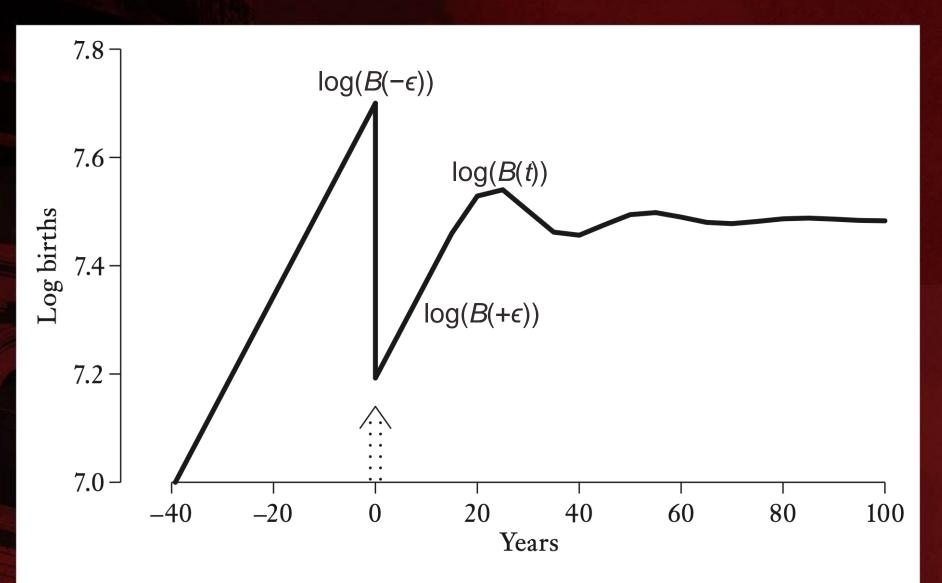


Figure 10.7 Logarithm of births in the Keyfitz scenario

#### Population momentum

- An approximation recommended to Keyfitz by James Frauenthal supposes that log(B(t)) ultimately settles down about halfway between  $log(B(+\epsilon))$  and  $log(B(-\epsilon))$
- Writing *U* for a future time at which an ultimate stationary population is been achieved, we have

 $B(U) \approx B(-\epsilon)/\sqrt{NRR}$ 



# Convert births to population sizes

 We divide births before the drop by the Crude Birth Rate before the drop b(−ε) to find

$$K(-\epsilon) = B(-\epsilon) / b(-\epsilon)$$

• Using the stationary population identity  $(1/b(U) = e_0)$ , we multiply births in the ultimate stationary population by  $e_0$ 

$$K(U) = B(U)e_0$$

 This converts the approximation for births into an approximation for the momentum effect on population size

$$\frac{K(U)}{K(-\epsilon)} \approx \frac{b(-\epsilon)e_0}{\sqrt{NRR}}$$



#### Exact formula

This is the approximate effect of momentum on population size

$$\frac{K(U)}{K(-\epsilon)} \approx \frac{b(-\epsilon)e_0}{\sqrt{NRR}}$$

Exact formula with age groups of width n

$$\frac{K(U)}{K(-\epsilon)} = \frac{NRR - 1}{NRR} \frac{b(-\epsilon)e_0}{\mu(1 - e^{-rn})/n}$$



#### Example for China, 1980

- Population: 985 million
- $CBR = b(-\epsilon) = 0.024$
- *NRR* = 1.5
- $e_0 = 70$
- If fertility rates dropped instantly to replacement levels by the same factor at all ages, the ultimate stationary population would have been

 $K(U) / K(-\epsilon) \approx b(-\epsilon)e_0 / \sqrt{NRR}$   $K(U) / 985 \approx 0.024 * 70 / \sqrt{1.5}$   $K(U) \approx 985 * 0.024 * 70 / \sqrt{1.5}$  $K(U) \approx 1.350$  billion



# Challenges

- Population momentum is one of the most important concepts that demographers bring to public policy
- In government and among the press, it is not widely appreciated that very substantial future increases in human numbers are already built into the present structure of world population
- Momentum amplifies the challenges faced by any program for sustainable development



#### References

Wachter KW. 2014. Essential Demographic Methods. Cambridge: Harvard University Press. Chapter 10 (pp. 218–249).



