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Outline
• Mathematical models to smooth migration rates

– Rogers, Castro 1981

• Improved measures of age profiles of migration
– Bernard, Bell, Charles-Edwards 2014

• Migration flows from population stocks of infants
– Rogers, Jordan 2004

• Log-linear models for migration
– Raymer, Rogers 2007

• Analysis of spatial association
– Anselin 1995

• Gravity models
– Stillwell 2005

• Spatial analysis
– LeSage, Pace 2008

• Agent-based models and simulations
– Klabunde, Willekens 2016; Klabunde et al. 2017

2



Smooth migration rates

• After the estimation of migration rates by age group, 

mathematical models can be implemented on the results 
(Rogers, Castro 1981; Rogers, Jordan 2004)

• Regularities found in migration rates by age help develop 

hypothetical migration models that can be used in 

population studies with limited or inadequate data
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Modeling migration schedules

• Mathematical models can be applied to estimated 

migration rates, in order to (Rogers, Castro 1981; Rogers, Jordan 2004)

– Smooth the curves of migration rates

– Originate parameters to assist in understanding levels and 

patterns of population flows among areas

• The mathematical proposition establishes that

– Migration is highly influenced by economics, thus curves 

designate different moments of an individual’s entrance into 

the labor market

– The migration schedule is composed of four components 

related to the labor market
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Model migration schedule

	
Source: Rogers, Castro 1981, p.6.
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Four components

of migration schedule

• Pre-labor curve is a negative exponential curve from 0 to 19 years-

of-age (α1 as the descendent indicator; a1 as the level indicator)

• Labor-age curve has a parabolic shape (μ2 as the mean age 

indicator; λ2 as the ascendant indicator; α2 as the descendent 

indicator; a2 as the level indicator)

• Post-labor curve is a small parabola signifying the individuals 

around 65 years-of-age (μ3 as the mean age indicator; λ3 as the 

ascendant indicator; α3 as the descendent indicator; a3 as the level 

indicator)

• A constant is the last parameter of the model schedule (c), which 

adjusts the level of migration rates to the mathematic expression

6
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Basic model migration schedule

• It has a parabola in post-labor ages

• This equation has 11 parameters

M(x) = a1*exp(–α1x)

           + a2*exp{–α2(x–μ2)–exp[–λ2(x–μ2)]}

           + a3*exp{–α3(x–μ3)–exp[–λ3(x–μ3)]}

           + c

Source: Rogers, Castro 1981.
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Basic migration model
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– Negative exponential curve in first ages

– Parabola in labor ages

– Small parabola in post-labor ages

– Constant term to adjust level

Source: Rogers, Castro 1981.



Migration model schedule

with an upward slope

• It has a linear function in post-labor ages

• This equation has 9 parameters

M(x) = a1*exp(–α1x)

           + a2*exp{–α2(x–μ2)–exp[–λ2(x–μ2)]}

           + a3*exp(α3x)

           + c

Source: Rogers, Castro 1981.
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Migration model schedule

with an upward slope
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Reduced model

• It has a constant value in post-labor ages

• This equation has 7 parameters

M(x) = a1*exp(–α1x)

           + a2*exp{–α2(x–μ2)–exp[–λ2(x–μ2)]}

           + c

Source: Rogers, Castro 1981.
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Reduced model
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Source: Rogers, Castro 1981.

• Following example was done for men 15–64 years old...
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Source: Amaral et al. 2016. 13



North to Southeast,
Males, Brazil

(place of residence 5 years before the census)

Source: Amaral et al. 2016. 14
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Application of mathematical models
• SPSS

– Non-linear regression. Menu: “Analyze”/“Regression”/“Non-linear”

– Levenberg-Marquardt estimation method

• MATLAB
(https://www.mathworks.com/products/matlab.html)

• TableCurve 2D
(https://systatsoftware.com/products/tablecurve-2d/)

– Graphical interface that helps the definition of initial values 

of parameters

– We can use parameters from previous estimation, instead 

of maintaining initial values as SPSS

– Test values for parameters before we estimate the model

• Application developed by Dr. Reinaldo dos Santos
(https://demometrics.shinyapps.io/demometrics/)
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Usefulness of migration schedules

• Model migration schedules by Rogers and Castro 

represent a powerful conceptual tool

• They provide a useful device for exploring the 

relationship between age and migration

• They have the singular strength that they capture 

the full variation in the propensity to migrate that 

occurs across the age profile

• They are applied widely in other areas, such as 

the development of inputs to population 

projections

16Source: Bernard, Bell, Charles-Edwards 2014.



Limitations of model schedule parameters

• Variability in the number and value of parameters

– Since different numbers of parameters may be used to estimate 

model schedules, comparisons are compromised

• Sensitivity of parameter estimates to initial value selection

– Change in initial parameters can result in varying final parameters

– High level of correlation among parameters within a model

• Instability of parameter estimates

– Parameters can be set to different values, but they can deliver 

similar degrees of goodness of fit (over-parameterization)

• Comparability of parameter estimates

– Large set of parameters makes it difficult to compare countries

• Interpretability of parameter estimates is challenging

– E.g., α1, α2, λ2 do not best capture the slope of component curves. 

Rate of change (first derivative) provides more accurate measure

17Source: Bernard, Bell, Charles-Edwards 2014.





Improved measures of

age profiles of migration

19Source: Bernard, Bell, Charles-Edwards 2014, p.187.



MURC & MDRC

• The maximum rate of change provides a more 

accurate measure of the migration slopes

– Instead of exponential coefficients

• Maximum upwards rate of change (MURC)

– Capture upward slope of labor force curve

• Maximum downwards rate of change (MDRC)

– Capture downward slope of labor force curve

20Source: Bernard, Bell, Charles-Edwards 2014.



Estimating MURC & MDRC

• These measures ensure more consistent 

discrimination between countries whose 

migration profiles have different shapes

– They can be calculated without estimating model 

schedules

– Take difference in migration intensity between two 

consecutive ages

– Repeat this sequentially across the relevant age range, 

and identify the age at which the maximum rate of 

change occurs

21Source: Bernard, Bell, Charles-Edwards 2014.



MURC & MDRC avoid problems

• Similar measures could also be computed by 

taking the first derivative of the model migration 

schedule

• However, the simplified approach ensures that 

results are not prejudiced by problems of 

parameter variability, sensitivity, or instability

22Source: Bernard, Bell, Charles-Edwards 2014.



23Source: Bernard, Bell, Charles-Edwards 2014, p.188.



Principal characteristics of migration

• The complexity of the age profile of migration can 

be reduced to two principal characteristics

– Associated with other features of the age profile

• Age at which migration peaks (x-axis)

– It relates to the symmetry of the labor force curve

– Symmetry increases as age at peak rises

• Intensity of migration at the peak (y-axis)

– It shapes the slopes demarcating the labor force curve

– As intensity increases, the upward and downward 

slopes progressively steepen

– This relationship happens only when the slopes are 

expressed via the rate of change

24Source: Bernard, Bell, Charles-Edwards 2014.



Factor analysis
• Factor analysis shows that these two metrics (age 

and intensity at peak) account for 67% of inter-

country variance across 25 countries

25Source: Bernard, Bell, Charles-Edwards 2014, p.189.



Age at peak vs. Intensity at peak
• Plotting age at peak against intensity at peak provides 

evidence of regional variations in the age profile of 

internal migration among countries

26Source: Bernard, Bell, Charles-Edwards 2014, p.190.





Migration flows from stocks of infants

• When adequate data on migration are 

unavailable, we need to use indirect techniques

• Migration stocks of children (0–4 age group) is 

used to estimate rates for all other age groups

• We know that children who live in region j at 

census date and who were born in region i 

migrated during the previous five years

• Assumption: these children migrated only once 

during this period, because they were born on 

average two and a half years before the census

28Source: Rogers, Jordan 2004.



Model components

• Sij(+): fraction of persons of all ages who resided in region 

i at the start of time interval and in region j at the end of 

interval

• Sij(–5): fraction of all births born in region i during the past 

five years who survived to the census date to enter the 0–

4 years age group resident in region j at that date

• iKj(+)%: percentage of i-borns of all ages who are 

enumerated in region j at census time

• Sij(x): regression equation is used to estimate migration 

flows for other age groups x

Sij(x) = a + b(x)Sij(–5) + c(x)iKj(+)% + error term

29Source: Rogers, Jordan 2004.



Logistic regression

• To ensure that the estimated conditional survivorship 

proportions are always non-negative, and range between 

zero and one unit, we estimate a logistic regression

• Thus, instead of predicting the survivorship proportions 

using a linear estimation approach, the logged odds of the 

survivorship are predicted, then converted back into 

probabilities

30Source: Rogers, Jordan 2004.



Example

31Source: Rogers, Jordan 2004, p.48.



Quality of results

• Age patterns follow standard regularities observed in 

empirical schedules

– But the flows tend to be underestimated by 9%

• 20–24 age group is the best predicted by the model

– Mean average percent error (MAPE) of 11%

• 80–84 age group is the worst predicted by the model

– MAPE of 34%

– Infant migration better predicts the migration flow of parents 

instead of grandparents

• Indirect estimation of migration flows (numbers) and 

propensities (probabilities) is possible by the persistent 

regularities observed in demographic data

32Source: Rogers, Jordan 2004.





Log-linear models for migration

• Raymer, Rogers (2007) propose the estimation of 

interregional migration flows using age and 

spatial structures

• Useful for countries with inadequate, inaccurate, 

or incomplete data-reporting systems

• Other countries might not have detailed 

information on migration in recent years

– U.S. has migration information only on American 

Community Survey (not on Census since 2010)

34Source: Raymer, Rogers 2007.



Multiplicative component approach

• Interregional migration flows can be disaggregated into 

four separate components (without age)

• Overall component: level of migration

• Origin component: relative “pushes” from each region

• Destination component: relative “pulls” to each region

• Two-way origin-destination interaction component: 

impacts of physical or social distance between places, 

which are not explained by the overall and main effects

35Source: Raymer, Rogers 2007.



Multiplicative component model

nijx = (T)(Oi)(Dj)(Ax)(ODij)(OAix)(DAjx)(ODAijx)

• nijx: observed flow of migration from region i to region j in 

age group x

• T: total number of migrants (n++)

• Oi: proportion of all migrants leaving from region i (ni+/n++)

• Dj: proportion of all migrants moving to region j (n+j/n++)

• ODij: ratio of observed migration to expected migration 

nij/[(T)(Oi)(Dj)]

• Ax: proportion of all migrants in age group x

36Source: Raymer, Rogers 2007.



Log-linear model

• The multiplicative component descriptive model...

nijx = (T)(Oi)(Dj)(Ax)(ODij)(OAix)(DAjx)(ODAijx)

• ... can be expressed as a saturated log-linear 

statistical model

37Source: Raymer, Rogers 2007.
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Other considerations

• These models are hierarchical

– For two-way interaction terms, the main effect 

parameters must be included

– For three-way interaction terms, all the main effects 

and two-way interactions must be included

• Migration flow tables are complicated because 

they can mix migrants with non-migrants or 

intraregional migrants

– Structural zeros can be inserted to remove non-

migrants (quasi-independence model)

38Source: Raymer, Rogers 2007.



Example of migration among

four regions of Mexico

39Source: Raymer, Rogers 2007, p.206.



𝑛21 = 𝑇 𝑂2 𝐷1 𝑂𝐷21 = 𝑛++
𝑛2+
𝑛++

𝑛+1
𝑛++

𝑛21

𝑛++
𝑛2+
𝑛++

𝑛+1
𝑛++

𝑛21 = 1,763,178
472,262

1,763,178

676,870

1,763,178

308,712

181,452

𝑛21 = 1,763,178 0.268 0.384 1.703 = 308,712

40Source: Raymer, Rogers 2007, p.207.

n++

n2+

n+1

n21

OD21

OD21 (origin-destination 

association): ratio of 

observed migration to 
expected migration. There 
were 70% more migrants 

than expected.



Interregional Migration in Mexico, 

1985–1990 and 1995–2000

41Source: Raymer, Rogers 2007, p.213.

• Children (5–9) were more likely 

to migrant from Border region 

• Young adults (15–24) were 

more likely to migrate from 

South region

• Young adults (15–24) were less 

likely to migrate from Border 

region

• Adults (25+) were more likely to 

migrate from Border region

• Adults (25+) were less likely to 

migrate from South region



Interregional Migration in Mexico, 

1985–1990 and 1995–2000

42Source: Raymer, Rogers 2007, p.213.

• Children (5–9) were more likely 

to migrant to South region 

• Young adults (15–24) were 

more likely to migrate to Border 

region

• Young adults (15–24) were less 

likely to migrate to South region

• Adults (25+) were more likely to 

migrate to South region

• Adults (30+) were less likely to 

migrate to Border region





Analysis of spatial association

• In spatial association analysis, we recognize that 

people are not randomly distributed over space

• Local indicator of spatial association (LISA) 

identifies local clusters and spatial outliers

– It estimates contributions of each area (Anselin 1995)

– We considered neighbors as areas sharing a border 

(queen contiguity)

• We analyze concentration of internal migrants in 

areas of destination in the U.S.

44



Spatial clusters and outliers

• Spatial clusters

– High-High: areas with high levels of a specific indicator 

surrounded by areas with high levels for that indicator

– Low-Low: areas with low levels of a specific indicator 

surrounded by areas with low levels for that indicator

• Spatial outliers

– High-Low: areas with high levels of a specific indicator 

surrounded by areas with low levels for that indicator

– Low-High: areas with low levels of a specific indicator 

surrounded by areas with high levels for that indicator

45



LISA example
• We analyze spatial distributions of internal 

migrants with the 2019 American Community 

Survey

• Areas of destination (current residence)

– Publicly available data has information on Public Use 

Microdata Areas (PUMAs) as the lowest level of 

geographic aggregation (100,000+ residents)

• Areas of origin (previous residence)

– Data relates to PUMAs or, for confidentiality issues, 

groups of PUMAs (also known as MIGPUMAs)

46Source: Amaral et al. 2020.



Homogenize areas

• We group PUMAs of destination at the same 

geographic level as MIGPUMAs of origin

– 2,378 PUMAs (current residence)

– 1,005 MIGPUMAs (previous residence)

• This is a strategy to homogenize areas of 

previous and current residence

47Source: Amaral et al. 2020.



State, MIGPUMA, PUMA

48

• We group PUMAs of destination at the 
same level as MIGPUMAs of origin

– 2,378 PUMAs (residence at the survey date)

– 1,005 MIGPUMAs (residence one year before the survey)



Migration status

• Internal migrants

– Those who resided in another PUMA (or MIGPUMA) 

one year before the survey

• Non-migrants

– Those who resided in the same area in the previous 

year

• International migrants

– Those who resided in another country one year before 

the survey (not included in our analysis)

49Source: Amaral et al. 2020.



Proportion of internal migrants, 2018–2019

LISA of proportion of

internal migrants, 2018–2019

50Source: 2019 American Community Survey.



US-born non-migrants

Foreign-born non-migrants

US-born internal migrants

Foreign-born internal migrants

Internal migrants are those who changed residence between 2018 and 2019

51Source: 2019 American Community Survey.



Non-Hispanic Whites

Hispanics

Non-Hispanic African Americans

Non-Hispanic Native Americans

All maps below are for internal migrants, 2018–2019

52Source: 2019 American Community Survey.





Area-level models
• Gravity models

– These models will have a set of independent variables, 

including distance between areas

• Autoregressive spatial models

– Spatial dependence: influence of neighboring areas at 

origin and destination on the likelihood of migrating 
(Anselin, Rey 2014; LeSage, Pace 2008, 2009; Sardadvar, Vakulenko 2020)

– Bayesian statistics approach: use prior knowledge 

based on other data sources and historical trends 
(LeSage, Fischer 2016; LeSage, Satici 2016)
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Gravity models
• Gravity models are usually implemented to predict the 

likelihood of migration, using distance as the main 

exogenous factor (Head 2000; Lowry 1966; Pöyhönen 1963; Stillwell 2005, 2009; 

Tinbergen 1962)

• Gravity models address the distance between areas, as 

well as the changing population in the areas over time
– Distance is expected to play an intervening role on the levels of 

population streams

– Distance is constant over time, but population growth affects out- 

and in-migration trends

• Based on the regional equilibrium framework, the idea 

behind these models is to use the distance between 

areas and population trends to estimate the level of 

migration between areas
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Poisson regression
• Gravity models use population at the beginning of the 

period (Pi), population at the end of the period (Pj), and 

distance between areas (dij) to estimate migration flows 
(Head 2000; Lowry 1966; Pöyhönen 1963; Stillwell 2005, 2009; Tinbergen 1962)

– Mij: counts of migrants at the end of the period between areas of 

origin (i) and destination (j)

– b0: constant

– b1: coefficient associated with the population in area of origin at 

the beginning of the period (Pi)

– b2: coefficient associated with the population in area of destination 

at the end of the period (Pj)

– b3: coefficient related to the distance between areas (dij)

– εij: random error term associated with all pairs of areas

56



Zero-inflated Poisson models
• Zero-inflated Poisson statistical regressions can generate 

gravity models for inter-regional migration flows (Stillwell 2005, 

2009)

• Dependent variable is measured in discrete units (integer 

counts of migrants) and a discrete probability distribution

• These models are appropriate, because

– They do not maintain error variances as constant for the different 

sizes of estimated flows, as is the case of “log-normal” models

– The model is also recommended when there are a significant 

number of small flows among areas, no flows (zero migrants) 

among areas, and/or a small number of larger migration flows
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Need to include covariates
• Anderson and Van Wincoop (2003) estimate gravity 

models to predict trade between countries

– Distance is usually the main independent variable in gravity 

models

– Authors make gravity models more appropriate for their subject by 

adding covariates that have influence on the dependent variable

– They add national border barriers as a set of independent 

variables, which was not previously performed in their field

• We need to be aware of other factors that might influence 

population flows

– E.g., year, age, sex, race/ethnicity, marital status, education, 

population in origin, population in destination
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Example of projection

of veteran population
• Project the geographic distribution of the veteran population 

from 2014 to 2024 by age, sex, race/ethnicity, and service era

• We considered migration among 2,351 Public Use Microdata 

Areas (PUMA)

– Data: 2009–2013 American Community Survey (ACS)

• Gravity models estimated migration rates as a function of

– Population in the area of origin (at the beginning of the 

period)

– Population in the area of destination (at the end of the 

period)

– Squared distance between areas

– Age, sex, race/ethnicity, service era

Source: Pollard et al. 2015. 59



Source: Pollard et al. 2015, p.181–184. 60



Source: Pollard et al. 2015, p.181–184. 61



Source: Pollard et al. 2015, p.181–184. 62



Source: Pollard et al. 2015, p.181–184. 63



• Gravity models can be used to estimate exogenous 

measures of migration

– Example: reverse causality between migration and earnings

– Immigration increases competition and affects earnings

– Availability of jobs and income levels influence migration

• Distances among areas

– Used as an instrumental variable for predicting migration

– Related to migration levels, but not to earnings

Distance ➔ Migration ➔ Earnings

Example to deal with

reverse causality (details on next lecture)

EarningsMigration

Source: Amaral et al. 2016. 64





Spatial analysis

• Spatial models can estimate multivariate models to verify 

the association of several independent variables 

(explanatory variables) with a specific dependent variable 

(explained variable)

• These models deal with spatial dependence by 

measuring the influence of neighboring areas at origin 

and destination for several variables at the same time 
(Anselin, Rey 2014, LeSage, Pace 2009)

• These multivariate models that consider effects of 

neighboring areas are also known as spatial 

autoregressive models
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Components of spatial analysis

• Origin-based dependence: individuals moving from a 

locality are influenced by the levels of migration of 

neighboring areas of origin

• Destination-based dependence: individuals moving to a 

locality are influenced by the levels of migration of 

neighboring areas of destination

• Origin-to-destination dependence: individuals are 

influenced by both neighboring localities of origin and 

destination

67



Endogenous Spatial Interaction
• The general spatial autoregressive model takes into 

account origin, destination, and origin-to-destination 

dependence (LeSage, Pace 2008, 2009; LeSage, Fischer 2016)

y = ρoWoy + ρdWdy + ρwWwy + αιn2 + Xoβo + Xdβd + gγ + ε

– Woy: spatial dependence at the origin

– Wdy: spatial dependence at the destination

– Wwy: interaction between origin and destination neighbors

– ιn2: n x n regions have a constant term parameter (α)

– Xo: characteristics for each of the regions of origin

– Xd: characteristics for each of the regions of destination

– g: distance between origin and destination

68



y: Migrants from
origin to destination

69

Endogenous Spatial Interaction

y = ρoWoy + ρdWdy + ρwWwy + αιn2 + Xoβo + Xdβd + gγ + ε

DestinationOrigin
Woy: Migrants from

neighbors of origin to destination

Wdy: Migrants from
origin to neighbors of destination

Wwy: Migrants from
neighbors of origin to neighbors of destination



Exogenous Spatial Interaction
• Exogenous interaction specifications are characterized by 

spatial lags of the exogenous variables Xo, Xd, leading to 

a model (LeSage, Fischer 2016)

y = αιn2 + Xoβo + Xdβd + gγ + WoXoθo + WdXdθd + ε

– ιn2: n x n regions have a constant term parameter (α)

– Xo: characteristics for each of the regions of origin

– Xd: characteristics for each of the regions of destination

– g: distance between origin and destination

– WoXo: characteristics of neighbors of origin

– WdXd: characteristics of neighbors of destination

70
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Exogenous Spatial Interaction

y = αιn2 + Xoβo + Xdβd + gγ + WoXoθo + WdXdθd + ε

y: Migrants from
origin to destination

DestinationOrigin

Wox: Characteristics of 
neighbors of origin

Wdx: Characteristics of 
neighbors of destination



Endogenous & Exogenous
• This model has endogenous and exogenous terms

y = ρoWoy + ρdWdy + ρwWwy +

αιn2 + Xoβo + Xdβd + gγ + WoXoθo + WdXdθd + ε

– Woy: spatial dependence at the origin

– Wdy: spatial dependence at the destination

– Wwy: interaction between origin and destination neighbors

– ιn2: n x n regions have a constant term parameter (α)

– Xo: characteristics for each of the regions of origin

– Xd: characteristics for each of the regions of destination

– g: distance between origin and destination

– WoXo: characteristics of neighbors of origin

– WdXd: characteristics of neighbors of destination
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y: Migrants from
origin to destination

DestinationOrigin
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Endogenous & Exogenous

Woy: Migrants from
neighbors of origin to destination

Wdy: Migrants from
origin to neighbors of destination

Wwy: Migrants from
neighbors of origin to neighbors of destination

y = ρoWoy + ρdWdy + ρwWwy +

αιn2 + Xoβo + Xdβd + gγ + WoXoθo + WdXdθd + ε

Wox: Characteristics of 
neighbors of origin

Wdx: Characteristics of 
neighbors of destination



Issues with spatial models
• Some issues arise when we estimate spatial models for 

population flows at the local level

• One problem of dealing with small areas is the presence 

of zero flow magnitudes between origin-destination areas

– We can treat the zero flows using a threshold Tobit model 

that contains spatial lags of the dependent variable (Ranjan, 

Tobias 2007, LeSage, Pace 2009)

• Another problem is the presence of large intraregional 

migration (diagonal of the origin-destination matrix) 

relative to interregional migration

– An approach is to add a separate intercept and explanatory 

variables for intraregional flows, which have non-zero 

observations for the intraregional observations and zero 

elsewhere (LeSage, Pace 2008, 2009)
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• Use IRS data to determine prior distributions

– IRS sample size is much larger than ACS

• Then, we can estimate models with ACS

– More detailed information about socioeconomic and 

demographic characteristics

Source: Hauer, Byars 2019.

Bayesian statistics approach

75



Application to state-level migration

• State-to-state flows from 1995 to 2000 for the 

population 5 years and over

• 1990 Census characteristics of the states

• Flows were all nonzero

• Log transformation produced a dependent 

variable that was nearly normal

• Two explanatory variables

– State population in 1995

– State unemployment rate in 1995

76Source: LeSage, Pace 2008.



Variables used in the model

77Source: LeSage, Pace 2008, p.961.



Estimates from Least-squares and spatial model

78Source: LeSage, Pace 2008, p.964.





Agent-based models
• Agent-based models can estimate the relationship 

between migration and several individual and contextual 

variables (Massey, Zenteno 1999; Klabunde, Willekens 2016, Klabunde et al. 2017)

• They include modules of endogenous predictors

• They can incorporate interactions between individual 

decisions, behavioral responses, and social networks 

related to migration outcomes

• These models are useful for projects that do not simply 

require descriptive current or project information about 

migration flows

• Researchers can seek to incorporate consequences of 

immigration into a given research question
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Simulations

• Agent-based models can formalize interconnections and 

simulate potential feedback relationships between 

migration streams and several endogenous predictors

– Education systems

– Labor markets

– Healthcare systems

– Migration policies

– Border security

– Social networks

• These models allow researchers to build different 

scenarios and simulate future population flows
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External data sources

• Combine textual data with demographic data with 

machine learning methods (Alburez-Gutierrez et al. 2019)

• Integrate data from other sources (e.g., social media, 

textual archives, private companies’ data) to Census 

Bureau databases

– Traditional datasets have the advantage of providing 

representative samples at the national, state, and local levels

– Information from other sources tend to be more up to date (Alexander 

et al. 2019)
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Mexico-U.S. migration

First set of regressions

Individual

variables
- Age

- Sex

- Race/ethnicity

- Education

- Marital status

- Labor force status

Likelihood

of migration

Differentials between areas

of destination and origin
- Labor, health, educational, demographic, 

crime indicators

Contextual variables
- Border patrol budget

- Immigration policies

- Residence/work visas Discrete event

micro-simulation (DES)
models

- Coefficients are selected within range

- Verify which parameters are useful

- Run models multiple times

Data
- Mexican Migration Project

- Mexican Family Life Survey

- Other secondary data sources

Calibration

Data
- Demographic Census

- American Community Survey

Second set of regressions

Conditional on being a migrant

Destination

of migrants

Gravity models
- Distance between areas

- Populations of areas of 

destination and origin

Individual

and contextual
variables

Calibration
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