

AULA 04 Teste de hipótese

Ernesto F. L. Amaral

03 de outubro de 2013

Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)

Fonte:

ESQUEMA DA AULA

- Fundamentos do teste de hipótese.
- Teste de uma afirmativa sobre uma proporção.
- Teste de uma afirmativa sobre uma média: σ conhecido.

- Teste de uma afirmativa sobre uma média: σ desconhecido.

 Teste de uma afirmativa sobre um desvio padrão ou uma variância.

FUNDAMENTOS DO TESTE DE HIPÓTESE

HIPÓTESE

- Inferência estatística usa dados amostrais para duas atividades principais:
 - Estimar parâmetro populacional.
 - Testar hipótese ou afirmativa sobre parâmetro populacional.
- Em estatística, hipótese é uma afirmativa sobre uma propriedade da população.
- Teste de hipótese (teste de significância) é um procedimento padrão para se testar uma afirmativa sobre uma propriedade da população.

REGRA DO EVENTO RARO

 Métodos de teste de hipótese se baseiam na regra do evento raro em inferência estatística.

- Se, sob uma dada suposição, a probabilidade de um evento observado particular é excepcionalmente pequena, concluímos que a suposição provavelmente não é correta.
- Testamos uma afirmativa analisando dados amostrais na tentativa de distinguir entre resultados que podem facilmente ocorrer por acaso e resultados que são altamente improváveis de ocorrer por acaso.

FUNDAMENTOS DO TESTE DE HIPÓTESE

- É importante entender os componentes individuais de um teste de hipótese.
- Conceitos básicos: hipótese nula, hipótese alternativa,
 estatística de teste, região crítica, nível de significância, valor crítico, valor P, erro tipo I e erro tipo II.
- Além do básico: poder de um teste.

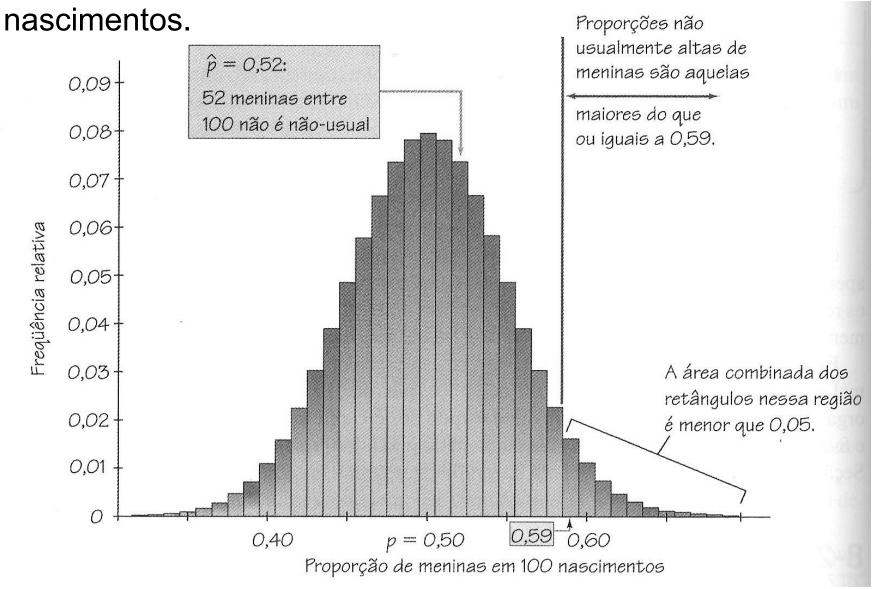
CONCEITOS BÁSICOS DE TESTES DE HIPÓTESES

– Objetivos:

- Dada uma afirmativa, identificar a hipótese nula e a hipótese alternativa e expressar ambas em forma simbólica.
- Dados uma afirmativa e dados amostrais, calcular o valor da estatística de teste.
- Dado um nível de significância, identificar os valores críticos.
- Dado um valor da estatística de teste, identificar o valor P.
- Estabelecer a conclusão de um teste de hipótese em termos simples, não-técnicos.

EXEMPLO

Distribuição amostral das proporções de meninas em 100



COMPONENTES DE UM TESTE DE HIPÓTESE FORMAL

- Hipótese nula (H₀) é uma afirmativa de que o valor de um parâmetro populacional (proporção, média ou desvio padrão) é igual a algum valor especificado.
 - Testamos a hipótese, supondo que ela seja verdadeira e chegamos à conclusão para rejeitar ou não rejeitar H₀.
 - Por exemplo: H_0 : p=0.5; ou H_0 : $\mu=98.6$; ou H_0 : $\sigma=15$.
- Hipótese alternativa (H₁ ou H_a ou H_A) é a afirmativa de que o parâmetro tem um valor que difere da hipótese nula.

Proporções	H₁: p>0,5	H ₁ : p<0,5	H ₁ : p≠0,5
Médias	H ₁ : μ>98,6	H ₁ : μ<98,6	H₁: μ≠98,6
Desvios padrões	H ₁ : σ>15	H ₁ : σ<15	H₁: σ≠15

ALGUMAS OBSERVAÇÕES

– Sobre o sinal de igualdade em H₀:

- Alguns livros usam os símbolos ≤ ou ≥.
- Porém, Triola sugere fazer o teste de hipótese supondo que a proporção, média ou desvio padrão seja **igual** a algum valor especificado.

Sobre o estabelecimento de suas próprias hipóteses:

- Se você usa um teste de hipótese para apoiar sua afirmativa, esta deve ser sua hipótese alternativa (hipótese de pesquisa).
- Deve ser escrita usando os símbolos < ou > ou ≠.
- Não se deve usar teste de hipótese para apoiar afirmativa de que parâmetro seja igual a algum valor especificado.

IDENTIFICAÇÃO DE H₀ E H₁

- Identifique a afirmativa ou hipótese específica a ser testada e expresse-a em forma simbólica.
- Dê a forma simbólica que tem que ser verdadeira quando a afirmativa original é falsa.
- Das duas expressões simbólicas obtidas até agora:
 - Faça a expressão da que não contém a igualdade: a
 hipótese alternativa H₁, utilizando o símbolo < ou > ou ≠.
 - Deixe que a hipótese nula H₀ seja a expressão simbólica que iguala o parâmetro ao valor fixo sendo considerado.

ESTATÍSTICA DE TESTE

- A estatística de teste é um valor usado para se tomar a decisão sobre a hipótese nula.
- Essa estatística é encontrada pela conversão da
 estatística amostral em um escore com a suposição de que a hipótese nula seja verdadeira.
- a hipótese nula seja veruauerra. – Estatística de teste para a **proporção**: $z = \frac{p-p}{\sqrt{\frac{pq}{n}}}$
- Estatística de teste para a média:

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \quad \text{ou} \quad t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

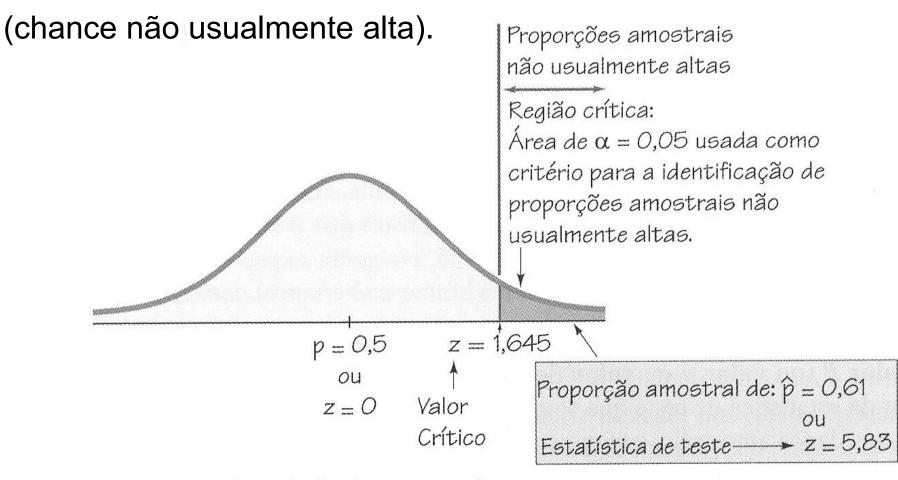
– Estatística de teste para o **desvio padrão**: $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$

REGIÃO CRÍTICA, NÍVEL DE SIGNIFICÂNCIA, VALOR CRÍTICO

- Região crítica (região de rejeição) é o conjunto de todos os valores da estatística de teste que nos fazem rejeitar a hipótese nula.
- Nível de significância (α) é a probabilidade da estatística de teste cair na região crítica quando a hipótese nula for verdadeira. É o complemento do nível de confiança (1–α).
 - Se estatística de teste cair na região crítica, rejeitamos a hipótese nula, sendo α igual à probabilidade de cometer o erro de rejeitar a hipótese nula quando ela é verdadeira.
- Valor crítico é qualquer valor que separa a região crítica (em que rejeitamos H₀) dos valores da estatística de teste que não levam à rejeição da hipótese nula.
 - Depende da hipótese nula, distribuição amostral e α.

REGIÃO CRÍTICA, VALOR CRÍTICO, ESTATÍSTICA DE TESTE

 Proporção amostral de 0,61 é convertida em estatística de teste (z=5,83). Ela não têm chance de ocorrer por acaso



Proporção de trabalhadores que acharam seu emprego através de redes de amigos

BILATERAL, UNILATERAL À ESQUERDA OU À DIREITA

- Caudas em uma distribuição são as regiões extremas limitadas pelos valores críticos e dependem de H₁.
- Teste bilateral: região crítica está nas duas regiões
 extremas sob a curva.

z = -1.96 z = 0 z = 1.96- **Teste unilateral à esquerda:** região crítica está na região extrema esquerda sob a curva.

 $z = -1,645 \quad z = 0$

Teste unilateral à direita: região crítica está na região extrema direita sob a curva.

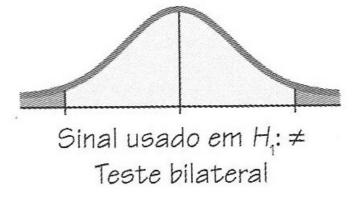
$$z = 0 \quad z = 1,645$$

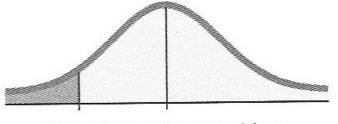
MAIS SOBRE TIPO DE TESTES

 Cauda será a região crítica com valores que entrarão em conflito significativo com hipótese nula.

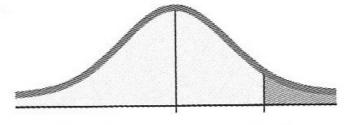
O sinal de desigualdade em H₁ indica a direção da região

crítica.





Sinal usado em H_1 : < Teste unilateral à esquerda



Sinal usado em H_i: > Teste unilateral à direita

VALOR P

- Valor P (ou valor p ou valor de probabilidade) é a probabilidade de se obter um valor da estatística de teste que seja, no mínimo, tão extremo quanto aquele que representa os dados amostrais, supondo que a hipótese nula seja verdadeira.
- Hipótese nula é rejeitada se valor P for muito pequeno, por exemplo, igual ou menor a 0,05.
- Pequeno valor P indica que resultados amostrais têm pouca chance de ocorrer por acaso. Ou seja, dados apresentam tendência, rejeitando H₀.
- Podemos ainda pensar esse valor como sendo a probabilidade da hipótese nula não ser rejeitada.

DECISÕES E CONCLUSÕES

- Nosso procedimento padrão de teste de hipótese requer que testemos sempre a hipótese nula, de modo que nossa conclusão inicial será sempre uma das seguintes:
 - Rejeitar a hipótese nula.
 - Deixar de rejeitar a hipótese nula.

- A decisão de rejeitar ou não rejeitar H₀ é feita com:
 - Método tradicional (clássico).
 - Método do valor P (método mais usado atualmente).
 - Intervalos de confiança.

CRITÉRIO DE DECISÃO

– Método tradicional (clássico):

- Rejeite H₀: se estatística de teste ficar dentro da região crítica.
- Deixe de rejeitar H₀: se estatística de teste não ficar dentro da região crítica.

– Método do valor P:

- Rejeite H₀: se valor P≤α (α é o nível de significância).
- Deixe de rejeitar H₀: se o valor $P>\alpha$.
- Outra opção: em vez de usar valor para α , indique valor P.
- Intervalos de confiança: rejeite afirmativa de que parâmetro populacional tenha um valor que não esteja no IC.

REDAÇÃO DA CONCLUSÃO FINAL

- Devemos usar termos simples (não-técnicos) para escrever a conclusão final sobre o teste de hipótese.
- Se você deseja apoiar uma afirmativa, formule-a para ser a hipótese alternativa, de modo a rejeitar a hipótese nula.
- Alguns textos dizem "aceitar a hipótese nula" em vez de "deixar de rejeitar a hipótese nula":
 - Porém, devemos saber que não estamos provando H₀.
 - Termo "aceitar" é enganoso, pois implica que H₀ foi provada.
 - "Deixar de rejeitar" é mais apropriado, pois dizemos que evidência amostral não é forte o bastante para rejeitar H₀.

EVITE NEGATIVAS MÚLTIPLAS

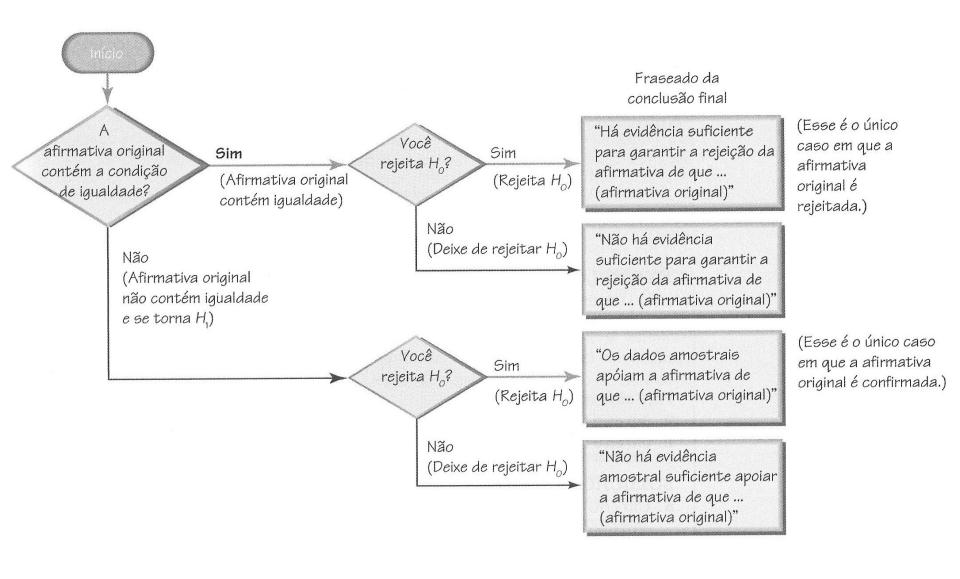
- Em vez de dizer:
 - Não há evidência suficiente para garantir a rejeição da afirmativa de nenhuma diferença entre 0,5 e a proporção populacional.

- Seria melhor usar:
 - Deixa-se de rejeitar a afirmativa de que a proporção populacional seja igual a 0,5.

OU

 Até que se obtenha evidência mais forte, continuamos admitindo que a proporção populacional seja igual a 0,5.

PROCEDIMENTO PARA ESCREVER CONCLUSÃO FINAL



DECISÃO SOBRE HIPÓTESES

Hipóteses	p < α	p > α
Hipótese nula (H ₀)	Rejeita	Não rejeita
Hipótese alternativa (H ₁)	Aceita	Não aceita

- p-valor: é a
 probabilidade de
 não rejeitar a
 hipótese nula.
- Se programa
 calcular p-valor
 bilateral, divida
 por 2 para obter
 p-valor unilateral.

Nível de significância (α)	Nível de confiança (NC)
0,10 (10%)	90%
0,05 (5%)	95%
0,01 (1%)	99%
0,001 (0,1%)	99,9%

ERROS TIPO I E TIPO II

- Ao testar H₀, chegamos a uma conclusão de rejeitá-la ou de deixar de rejeitá-la.
- Tais conclusões pode estar corretas ou erradas.

		Estado verdade	eiro da natureza
	ji.	A hipótese nula é verdadeira	A hipótese nula é falsa
	Decidimos rejeitar a hipótese nula.	Erro tipo I (rejeitar uma hipótese nula verdadeira) α	Decisão Correta
Decisão	Deixamos de rejeitar a hipótese nula	Decisão Correta	Erro tipo II (deixar de rejeitar uma hipótese nula falsa) β

- α: probabilidade de erro tipo I (probabilidade de rejeitar hipótese nula quando ela é verdadeira).
- $-\beta$: probabilidade de erro tipo II (probabilidade de deixar de rejeitar hipótese nula quando ela é falsa).

CONTROLE DOS ERROS TIPO I E TIPO II

- No procedimento para teste de hipóteses, selecionamos um nível de significância (α), que é a probabilidade de rejeitar a hipótese nula quando ela é verdadeira (erro tipo I).
- Porém, não selecionamos (β), que é a probabilidade de deixar de rejeitar H₀ quando ela é falsa (erro tipo II).
- Alfa (α), beta (β) e tamanho amostral (n) estão relacionados: se determinamos dois deles, o terceiro está determinado.
- Geralmente selecionamos primeiro α e n:
 - Para qualquer α fixo, aumento em n causará diminuição em β .
 - Para qualquer n fixo, diminuição em α causará aumento em β e vice-versa.
 - Para diminuir α e β , aumente n.

TESTE DE HIPÓTESE ABRANGENTE

- Foram descritos componentes individuais de um teste de hipótese.
- Podemos testar afirmativas sobre parâmetros populacionais com:

Método do valor P.

Método tradicional.

Método do intervalo de confiança.

MÉTODO DO INTERVALO DE CONFIANÇA

- Construa um intervalo de confiança (IC) com o nível de confiança (NC) ou nível de significância (α) selecionado.
- Teste de hipótese bilateral constrói IC com NC = $1-\alpha$.
- Teste de hipótese unilateral constrói IC com NC = $1-2\alpha$.

Tabela 8-2	Nível de Confiança para o Intervalo de Con		
		Teste Bilateral	Teste Unilateral
Nível de	0,01	99%	98%
Significância	0,05	95%	90%
para o Teste de Hipótese	0,10	90%	80%

- A estimativa de intervalo de confiança de um parâmetro populacional contém os valores prováveis do parâmetro.
- Rejeite uma afirmativa de que o parâmetro populacional tem um valor que não está incluído no intervalo de confiança.

O PODER DE UM TESTE

- Usamos β para designar a probabilidade de deixar de rejeitar uma hipótese nula falsa (**erro tipo II**).
- **Poder de um teste** de hipótese é a probabilidade $(1-\beta)$ de se rejeitar uma hipótese nula falsa.
 - Essa probabilidade é calculada usando um nível de significância específico (α) e um valor particular do parâmetro populacional que seja uma alternativa (H₁) ao valor assumido na hipótese nula (H₀).
- O poder de um teste de hipótese é a probabilidade de se apoiar uma hipótese alternativa (H₁) verdadeira.
- Dependendo dos valores particulares escolhidos como alternativos à hipótese nula, poder do teste será diferente.
- Geralmente é exigido poder de teste entre 0,8 e 0,9.

TESTE DE UMA AFIRMATIVA SOBRE UMA PROPORÇÃO

REQUISITOS PARA PROPORÇÃO POPULACIONAL

- Requisitos para testar afirmativas sobre uma proporção populacional p:
- Amostra aleatória simples.
- Distribuição binomial satisfeita (número fixo de tentativas independentes tendo probabilidades constantes; duas categorias de resultados).
- Distribuição binomial das proporções amostrais pode ser aproximada por uma distribuição normal (np≥5 e nq≥5).

PROPORÇÃO POPULACIONAL

– Notação:

- n = tamanho da amostra ou número de tentativas
- -p-chapéu = x / n (proporção amostral)
- p = proporção populacional (usada na hipótese nula)
- -q=1-p
- Estatística de teste para testar uma afirmativa sobre a proporção populacional:
 - Valores P: distribuição normal padrão
 - Valores críticos: distribuição normal padrão
 - Estatística de teste: $z = \frac{\hat{p} p}{\sqrt{pq}}$

TESTE DE UMA AFIRMATIVA SOBRE UMA MÉDIA: σ CONHECIDO

REQUISITOS PARA MÉDIA POPULACIONAL COM σ CONHECIDO

- Requisitos para testar afirmativas sobre uma média populacional com σ conhecido:
- Amostra aleatória simples.
- Valor do desvio padrão populacional σ é conhecido.
- População é normalmente distribuída e/ou n>30.

MÉDIA POPULACIONAL COM σ CONHECIDO

– Notação:

- -n = tamanho da amostra
- x-barra = média amostral
- $-\mu$ = média populacional (usada na hipótese nula)
- $-\sigma$ = desvio padrão populacional conhecido
- **Estatística de teste** para testar uma afirmativa sobre a média populacional com σ conhecido:
 - Valores P: distribuição normal padrão
 - Valores críticos: distribuição normal padrão
 - Estatística de teste: $z = \frac{\bar{x} \mu_{\bar{x}}}{\frac{\sigma}{\sqrt{n}}}$

TESTE DE UMA AFIRMATIVA SOBRE UMA MÉDIA: σ DESCONHECIDO

REQUISITOS PARA MÉDIA POPULACIONAL COM σ DESCONHECIDO

- Requisitos para testar afirmativas sobre uma média populacional com σ desconhecido:
- Amostra aleatória simples.
- Valor do desvio padrão populacional σ não é conhecido.
- População é normalmente distribuída e/ou n>30.

MÉDIA POPULACIONAL COM σ DESCONHECIDO

– Notação:

- -n = tamanho da amostra
- x-barra = média amostral
- $-\mu$ = média populacional (usada na hipótese nula)
- s = desvio padrão da amostra
- Estatística de teste para testar uma afirmativa sobre a média populacional com σ desconhecido:
 - Valores P: distribuição t de Student, com (n-1) graus de liberdade (gl).
 - Valores críticos: distribuição t de Student, com (n-1) graus de liberdade (gl). $\bar{x} \mu_{\bar{z}}$
 - Estatística de teste: $t = \frac{S}{\sqrt{n}}$